mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
Merge branch 'FunAudioLLM:main' into fastapi
This commit is contained in:
@@ -114,7 +114,10 @@ class CosyVoiceFrontEnd:
|
||||
token_min_n=60, merge_len=20,
|
||||
comma_split=False)]
|
||||
else:
|
||||
text = self.en_tn_model.normalize(text)
|
||||
if self.use_ttsfrd:
|
||||
text = self.frd.get_frd_extra_info(text, 'input')
|
||||
else:
|
||||
text = self.en_tn_model.normalize(text)
|
||||
text = spell_out_number(text, self.inflect_parser)
|
||||
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
||||
token_min_n=60, merge_len=20,
|
||||
|
||||
@@ -56,4 +56,5 @@ class CosyVoiceModel:
|
||||
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
||||
embedding=flow_embedding.to(self.device))
|
||||
tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
||||
torch.cuda.empty_cache()
|
||||
return {'tts_speech': tts_speech}
|
||||
|
||||
@@ -167,7 +167,7 @@ def parse_embedding(data, normalize, mode='train'):
|
||||
"""
|
||||
for sample in data:
|
||||
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
||||
sample['spk_embedding'] = torch.stack([torch.tensor(i, dtype=torch.float32) for i in sample['spk_embedding']], dim=0).mean(dim=0)
|
||||
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
|
||||
if normalize:
|
||||
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
||||
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
||||
|
||||
@@ -60,7 +60,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
||||
token_len = batch['speech_token_len'].to(device)
|
||||
feat = batch['speech_feat'].to(device)
|
||||
feat_len = batch['speech_feat_len'].to(device)
|
||||
embedding = batch['utt_embedding'].to(device)
|
||||
embedding = batch['embedding'].to(device)
|
||||
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
|
||||
@@ -97,7 +97,7 @@ class TransformerLM(torch.nn.Module):
|
||||
text_token_len = batch['text_token_len'].to(device)
|
||||
speech_token = batch['speech_token'].to(device)
|
||||
speech_token_len = batch['speech_token_len'].to(device)
|
||||
embedding = batch['utt_embedding'].to(device)
|
||||
embedding = batch['embedding'].to(device)
|
||||
|
||||
# 1. prepare llm_target
|
||||
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size]) for i in range(text_token.size(0))]
|
||||
|
||||
@@ -52,6 +52,10 @@ class Executor:
|
||||
info_dict["batch_idx"] = batch_idx
|
||||
if cosyvoice_join(group_join, info_dict):
|
||||
break
|
||||
if info_dict["use_spk_embedding"] is True:
|
||||
batch_dict["embedding"] = batch_dict["spk_embedding"]
|
||||
else:
|
||||
batch_dict["embedding"] = batch_dict["utt_embedding"]
|
||||
|
||||
# Disable gradient synchronizations across DDP processes.
|
||||
# Within this context, gradients will be accumulated on module
|
||||
|
||||
@@ -715,3 +715,25 @@ class NoamHoldAnnealing(WarmupHoldPolicy):
|
||||
|
||||
def set_step(self, step: int):
|
||||
self.last_epoch = step
|
||||
|
||||
|
||||
class ConstantLR(_LRScheduler):
|
||||
"""The ConstantLR scheduler
|
||||
|
||||
This scheduler keeps a constant lr
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
):
|
||||
# __init__() must be invoked before setting field
|
||||
# because step() is also invoked in __init__()
|
||||
super().__init__(optimizer)
|
||||
|
||||
def get_lr(self):
|
||||
return self.base_lrs
|
||||
|
||||
def set_step(self, step: int):
|
||||
self.last_epoch = step
|
||||
|
||||
@@ -34,7 +34,7 @@ from torch.nn.utils import clip_grad_norm_
|
||||
from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
|
||||
|
||||
from cosyvoice.dataset.dataset import Dataset
|
||||
from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing
|
||||
from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR
|
||||
|
||||
|
||||
def init_distributed(args):
|
||||
@@ -122,6 +122,9 @@ def init_optimizer_and_scheduler(args, configs, model):
|
||||
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
||||
scheduler_type = NoamHoldAnnealing
|
||||
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||
scheduler_type = ConstantLR
|
||||
scheduler = ConstantLR(optimizer)
|
||||
else:
|
||||
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||
|
||||
|
||||
@@ -190,6 +190,7 @@ train_conf:
|
||||
scheduler: warmuplr
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
use_spk_embedding: False # change to True during sft
|
||||
max_epoch: 200
|
||||
grad_clip: 5
|
||||
accum_grad: 2
|
||||
|
||||
@@ -186,10 +186,11 @@ data_pipeline: [
|
||||
train_conf:
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.001
|
||||
scheduler: warmuplr
|
||||
lr: 0.001 # change to 1e-5 during sft
|
||||
scheduler: warmuplr # change to constantlr during sft
|
||||
scheduler_conf:
|
||||
warmup_steps: 2500
|
||||
use_spk_embedding: False # change to True during sft
|
||||
max_epoch: 200
|
||||
grad_clip: 5
|
||||
accum_grad: 2
|
||||
|
||||
@@ -53,6 +53,8 @@ def main(args):
|
||||
if spk not in spk2embedding:
|
||||
spk2embedding[spk] = []
|
||||
spk2embedding[spk].append(embedding)
|
||||
for k, v in spk2embedding.items():
|
||||
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
||||
|
||||
torch.save(utt2embedding, '{}/utt2embedding.pt'.format(args.dir))
|
||||
torch.save(spk2embedding, '{}/spk2embedding.pt'.format(args.dir))
|
||||
|
||||
Reference in New Issue
Block a user