mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
add flow decoder cache
This commit is contained in:
@@ -91,6 +91,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(feat_len)).to(h)
|
||||
# NOTE 这一句应该是不需要的,应该h已经过length_regulator跟feat一样的shape了
|
||||
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
||||
loss, _ = self.decoder.compute_loss(
|
||||
feat.transpose(1, 2).contiguous(),
|
||||
@@ -190,6 +191,49 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
self.token_mel_ratio = token_mel_ratio
|
||||
self.pre_lookahead_len = pre_lookahead_len
|
||||
|
||||
def forward(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
token = batch['speech_token'].to(device)
|
||||
token_len = batch['speech_token_len'].to(device)
|
||||
feat = batch['speech_feat'].to(device)
|
||||
feat_len = batch['speech_feat_len'].to(device)
|
||||
embedding = batch['embedding'].to(device)
|
||||
|
||||
# xvec projection
|
||||
embedding = F.normalize(embedding, dim=1)
|
||||
embedding = self.spk_embed_affine_layer(embedding)
|
||||
|
||||
# concat text and prompt_text
|
||||
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
h, h_lengths = self.encoder(token, token_len)
|
||||
h = self.encoder_proj(h)
|
||||
|
||||
# get conditions
|
||||
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
||||
conds = torch.zeros(feat.shape, device=token.device)
|
||||
for i, j in enumerate(feat_len):
|
||||
if random.random() < 0.5:
|
||||
continue
|
||||
index = random.randint(0, int(0.3 * j))
|
||||
conds[i, :index] = feat[i, :index]
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(h_lengths.sum(dim=-1).squeeze(dim=1))).to(h)
|
||||
loss, _ = self.decoder.compute_loss(
|
||||
feat.transpose(1, 2).contiguous(),
|
||||
mask.unsqueeze(1),
|
||||
h.transpose(1, 2).contiguous(),
|
||||
embedding,
|
||||
cond=conds
|
||||
)
|
||||
return {'loss': loss}
|
||||
|
||||
@torch.inference_mode()
|
||||
def inference(self,
|
||||
token,
|
||||
@@ -199,6 +243,7 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
prompt_feat,
|
||||
prompt_feat_len,
|
||||
embedding,
|
||||
cache,
|
||||
finalize):
|
||||
if self.fp16 is True:
|
||||
prompt_feat = prompt_feat.half()
|
||||
@@ -215,9 +260,17 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||
|
||||
# text encode
|
||||
h, h_lengths = self.encoder(token, token_len)
|
||||
if finalize is False:
|
||||
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
|
||||
if finalize is True:
|
||||
h, h_lengths, encoder_cache = self.encoder.forward_chunk(token, token_len, **cache['encoder_cache'])
|
||||
else:
|
||||
token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:]
|
||||
h, h_lengths, encoder_cache = self.encoder.forward_chunk(token, token_len, context=context, **cache['encoder_cache'])
|
||||
cache['encoder_cache']['offset'] = encoder_cache[0]
|
||||
cache['encoder_cache']['pre_lookahead_layer_conv2_cache'] = encoder_cache[1]
|
||||
cache['encoder_cache']['encoders_kv_cache'] = encoder_cache[2]
|
||||
cache['encoder_cache']['upsample_offset'] = encoder_cache[3]
|
||||
cache['encoder_cache']['upsample_conv_cache'] = encoder_cache[4]
|
||||
cache['encoder_cache']['upsample_kv_cache'] = encoder_cache[5]
|
||||
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
||||
h = self.encoder_proj(h)
|
||||
|
||||
@@ -227,13 +280,14 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
conds = conds.transpose(1, 2)
|
||||
|
||||
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
||||
feat, _ = self.decoder(
|
||||
feat, cache['decoder_cache'] = self.decoder(
|
||||
mu=h.transpose(1, 2).contiguous(),
|
||||
mask=mask.unsqueeze(1),
|
||||
spks=embedding,
|
||||
cond=conds,
|
||||
n_timesteps=10
|
||||
n_timesteps=10,
|
||||
cache=cache['decoder_cache']
|
||||
)
|
||||
feat = feat[:, :, mel_len1:]
|
||||
assert feat.shape[2] == mel_len2
|
||||
return feat.float(), None
|
||||
return feat.float(), cache
|
||||
|
||||
Reference in New Issue
Block a user