mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
add flow decoder cache
This commit is contained in:
@@ -24,6 +24,7 @@ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
|
||||
|
||||
def get_args():
|
||||
@@ -71,6 +72,7 @@ def main():
|
||||
script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(llm_text_encoder.half())
|
||||
script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
|
||||
logging.info('successfully export llm_text_encoder')
|
||||
|
||||
# 2. export llm llm
|
||||
llm_llm = model.model.llm.llm
|
||||
@@ -78,14 +80,23 @@ def main():
|
||||
script.save('{}/llm.llm.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(llm_llm.half(), ['forward_chunk'])
|
||||
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
|
||||
logging.info('successfully export llm_llm')
|
||||
|
||||
# 3. export flow encoder
|
||||
flow_encoder = model.model.flow.encoder
|
||||
script = get_optimized_script(flow_encoder)
|
||||
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(flow_encoder.half())
|
||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||
|
||||
# 3. export flow encoder
|
||||
flow_encoder = model.model.flow.encoder
|
||||
script = get_optimized_script(flow_encoder)
|
||||
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(flow_encoder.half())
|
||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||
logging.info('successfully export flow_encoder')
|
||||
else:
|
||||
# 3. export flow encoder
|
||||
flow_encoder = model.model.flow.encoder
|
||||
script = get_optimized_script(flow_encoder, ['forward_chunk'])
|
||||
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||
script = get_optimized_script(flow_encoder.half(), ['forward_chunk'])
|
||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||
logging.info('successfully export flow_encoder')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
@@ -28,6 +28,7 @@ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
|
||||
|
||||
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
||||
@@ -51,6 +52,7 @@ def get_args():
|
||||
return args
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
@@ -64,52 +66,125 @@ def main():
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
|
||||
# 1. export flow decoder estimator
|
||||
estimator = model.model.flow.decoder.estimator
|
||||
if not isinstance(model, CosyVoice2):
|
||||
# 1. export flow decoder estimator
|
||||
estimator = model.model.flow.decoder.estimator
|
||||
estimator.eval()
|
||||
|
||||
device = model.model.device
|
||||
batch_size, seq_len = 2, 256
|
||||
out_channels = model.model.flow.decoder.estimator.out_channels
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
||||
torch.onnx.export(
|
||||
estimator,
|
||||
(x, mask, mu, t, spks, cond),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
export_params=True,
|
||||
opset_version=18,
|
||||
do_constant_folding=True,
|
||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||||
output_names=['estimator_out'],
|
||||
dynamic_axes={
|
||||
'x': {2: 'seq_len'},
|
||||
'mask': {2: 'seq_len'},
|
||||
'mu': {2: 'seq_len'},
|
||||
'cond': {2: 'seq_len'},
|
||||
'estimator_out': {2: 'seq_len'},
|
||||
}
|
||||
)
|
||||
device = model.model.device
|
||||
batch_size, seq_len = 2, 256
|
||||
out_channels = model.model.flow.decoder.estimator.out_channels
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
||||
torch.onnx.export(
|
||||
estimator,
|
||||
(x, mask, mu, t, spks, cond),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
export_params=True,
|
||||
opset_version=18,
|
||||
do_constant_folding=True,
|
||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||||
output_names=['estimator_out'],
|
||||
dynamic_axes={
|
||||
'x': {2: 'seq_len'},
|
||||
'mask': {2: 'seq_len'},
|
||||
'mu': {2: 'seq_len'},
|
||||
'cond': {2: 'seq_len'},
|
||||
'estimator_out': {2: 'seq_len'},
|
||||
}
|
||||
)
|
||||
|
||||
# 2. test computation consistency
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
||||
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
sess_options=option, providers=providers)
|
||||
# 2. test computation consistency
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
||||
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
sess_options=option, providers=providers)
|
||||
|
||||
for _ in tqdm(range(10)):
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
||||
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
||||
ort_inputs = {
|
||||
'x': x.cpu().numpy(),
|
||||
'mask': mask.cpu().numpy(),
|
||||
'mu': mu.cpu().numpy(),
|
||||
't': t.cpu().numpy(),
|
||||
'spks': spks.cpu().numpy(),
|
||||
'cond': cond.cpu().numpy()
|
||||
}
|
||||
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
||||
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
||||
for _ in tqdm(range(10)):
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
||||
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
||||
ort_inputs = {
|
||||
'x': x.cpu().numpy(),
|
||||
'mask': mask.cpu().numpy(),
|
||||
'mu': mu.cpu().numpy(),
|
||||
't': t.cpu().numpy(),
|
||||
'spks': spks.cpu().numpy(),
|
||||
'cond': cond.cpu().numpy()
|
||||
}
|
||||
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
||||
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
||||
logging.info('successfully export estimator')
|
||||
else:
|
||||
# 1. export flow decoder estimator
|
||||
estimator = model.model.flow.decoder.estimator
|
||||
estimator.forward = estimator.forward_chunk
|
||||
estimator.eval()
|
||||
|
||||
device = model.model.device
|
||||
batch_size, seq_len = 2, 256
|
||||
out_channels = model.model.flow.decoder.estimator.out_channels
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
||||
cache = model.model.init_flow_cache()['decoder_cache']
|
||||
cache.pop('offset')
|
||||
cache = {k: v[0] for k, v in cache.items()}
|
||||
torch.onnx.export(
|
||||
estimator,
|
||||
(x, mask, mu, t, spks, cond,
|
||||
cache['down_blocks_conv_cache'],
|
||||
cache['down_blocks_kv_cache'],
|
||||
cache['mid_blocks_conv_cache'],
|
||||
cache['mid_blocks_kv_cache'],
|
||||
cache['up_blocks_conv_cache'],
|
||||
cache['up_blocks_kv_cache'],
|
||||
cache['final_blocks_conv_cache']),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
export_params=True,
|
||||
opset_version=18,
|
||||
do_constant_folding=True,
|
||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond', 'down_blocks_conv_cache', 'down_blocks_kv_cache', 'mid_blocks_conv_cache', 'mid_blocks_kv_cache', 'up_blocks_conv_cache', 'up_blocks_kv_cache', 'final_blocks_conv_cache'],
|
||||
output_names=['estimator_out', 'down_blocks_conv_cache_out', 'down_blocks_kv_cache_out', 'mid_blocks_conv_cache_out', 'mid_blocks_kv_cache_out', 'up_blocks_conv_cache_out', 'up_blocks_kv_cache_out', 'final_blocks_conv_cache_out'],
|
||||
dynamic_axes={
|
||||
'x': {2: 'seq_len'},
|
||||
'mask': {2: 'seq_len'},
|
||||
'mu': {2: 'seq_len'},
|
||||
'cond': {2: 'seq_len'},
|
||||
'down_blocks_kv_cache': {3: 'seq_len'},
|
||||
'mid_blocks_kv_cache': {3: 'seq_len'},
|
||||
'up_blocks_kv_cache': {3: 'seq_len'},
|
||||
'estimator_out': {2: 'seq_len'},
|
||||
'down_blocks_kv_cache_out': {3: 'seq_len'},
|
||||
'mid_blocks_kv_cache_out': {3: 'seq_len'},
|
||||
'up_blocks_kv_cache_out': {3: 'seq_len'},
|
||||
}
|
||||
)
|
||||
|
||||
# 2. test computation consistency
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
||||
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
sess_options=option, providers=providers)
|
||||
|
||||
for _ in tqdm(range(10)):
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
||||
cache = model.model.init_flow_cache()['decoder_cache']
|
||||
cache.pop('offset')
|
||||
cache = {k: v[0] for k, v in cache.items()}
|
||||
output_pytorch = estimator(x, mask, mu, t, spks, cond, **{k: v.clone() for k, v in cache.items()})
|
||||
ort_inputs = {
|
||||
'x': x.cpu().numpy(),
|
||||
'mask': mask.cpu().numpy(),
|
||||
'mu': mu.cpu().numpy(),
|
||||
't': t.cpu().numpy(),
|
||||
'spks': spks.cpu().numpy(),
|
||||
'cond': cond.cpu().numpy(),
|
||||
}
|
||||
output_onnx = estimator_onnx.run(None, {**ort_inputs, **{k: v.clone().cpu().numpy() for k, v in cache.items()}})
|
||||
for i, j in zip(output_pytorch, output_onnx):
|
||||
torch.testing.assert_allclose(i, torch.from_numpy(j).to(device), rtol=1e-2, atol=1e-4)
|
||||
logging.info('successfully export estimator')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -3,8 +3,23 @@
|
||||
# download tensorrt from https://developer.nvidia.com/tensorrt/download/10x, check your system and cuda for compatibability
|
||||
# for example for linux + cuda12.4, you can download https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz
|
||||
TRT_DIR=<YOUR_TRT_DIR>
|
||||
MODEL_DIR=<COSYVOICE2_MODEL_DIR>
|
||||
|
||||
MODEL_DIR=<YOUR_MODEL_DIR>
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TRT_DIR/lib:/usr/local/cuda/lib64
|
||||
|
||||
# cosyvoice export
|
||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp32.mygpu.plan --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw --outputIOFormats=fp32:chw
|
||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp16.mygpu.plan --fp16 --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw --outputIOFormats=fp16:chw
|
||||
|
||||
# cosyvoice2 export with cache
|
||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp32.mygpu.plan \
|
||||
--minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4,down_blocks_kv_cache:1x4x2x0x512x2,mid_blocks_kv_cache:12x4x2x0x512x2,up_blocks_kv_cache:1x4x2x0x512x2 \
|
||||
--optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193,down_blocks_kv_cache:1x4x2x193x512x2,mid_blocks_kv_cache:12x4x2x193x512x2,up_blocks_kv_cache:1x4x2x193x512x2 \
|
||||
--maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800,down_blocks_kv_cache:1x4x2x200x512x2,mid_blocks_kv_cache:12x4x2x200x512x2,up_blocks_kv_cache:1x4x2x200x512x2 \
|
||||
--inputIOFormats=fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw \
|
||||
--outputIOFormats=fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw
|
||||
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp16.mygpu.plan --fp16 \
|
||||
--minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4,down_blocks_kv_cache:1x4x2x0x512x2,mid_blocks_kv_cache:12x4x2x0x512x2,up_blocks_kv_cache:1x4x2x0x512x2 \
|
||||
--optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193,down_blocks_kv_cache:1x4x2x193x512x2,mid_blocks_kv_cache:12x4x2x193x512x2,up_blocks_kv_cache:1x4x2x193x512x2 \
|
||||
--maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800,down_blocks_kv_cache:1x4x2x200x512x2,mid_blocks_kv_cache:12x4x2x200x512x2,up_blocks_kv_cache:1x4x2x200x512x2 \
|
||||
--inputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw \
|
||||
--outputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw
|
||||
|
||||
@@ -23,7 +23,7 @@ from torch.utils.data import DataLoader
|
||||
import torchaudio
|
||||
from hyperpyyaml import load_hyperpyyaml
|
||||
from tqdm import tqdm
|
||||
from cosyvoice.cli.model import CosyVoiceModel
|
||||
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
||||
from cosyvoice.dataset.dataset import Dataset
|
||||
|
||||
|
||||
@@ -33,6 +33,7 @@ def get_args():
|
||||
parser.add_argument('--prompt_data', required=True, help='prompt data file')
|
||||
parser.add_argument('--prompt_utt2data', required=True, help='prompt data file')
|
||||
parser.add_argument('--tts_text', required=True, help='tts input file')
|
||||
parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
|
||||
parser.add_argument('--llm_model', required=True, help='llm model file')
|
||||
parser.add_argument('--flow_model', required=True, help='flow model file')
|
||||
parser.add_argument('--hifigan_model', required=True, help='hifigan model file')
|
||||
@@ -59,10 +60,18 @@ def main():
|
||||
# Init cosyvoice models from configs
|
||||
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
|
||||
device = torch.device('cuda' if use_cuda else 'cpu')
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f)
|
||||
try:
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': args.qwen_pretrain_path})
|
||||
model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16=False)
|
||||
except Exception:
|
||||
try:
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f)
|
||||
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16=False)
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
|
||||
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
||||
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
||||
|
||||
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
|
||||
@@ -104,7 +113,7 @@ def main():
|
||||
tts_speeches = torch.concat(tts_speeches, dim=1)
|
||||
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
||||
tts_fn = os.path.join(args.result_dir, '{}.wav'.format(tts_key))
|
||||
torchaudio.save(tts_fn, tts_speeches, sample_rate=22050)
|
||||
torchaudio.save(tts_fn, tts_speeches, sample_rate=configs['sample_rate'], backend='soundfile')
|
||||
f.write('{} {}\n'.format(tts_key, tts_fn))
|
||||
f.flush()
|
||||
f.close()
|
||||
|
||||
@@ -46,6 +46,7 @@ def get_args():
|
||||
parser.add_argument('--config', required=True, help='config file')
|
||||
parser.add_argument('--train_data', required=True, help='train data file')
|
||||
parser.add_argument('--cv_data', required=True, help='cv data file')
|
||||
parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
|
||||
parser.add_argument('--checkpoint', help='checkpoint model')
|
||||
parser.add_argument('--model_dir', required=True, help='save model dir')
|
||||
parser.add_argument('--tensorboard_dir',
|
||||
@@ -97,8 +98,12 @@ def main():
|
||||
override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
|
||||
if gan is True:
|
||||
override_dict.pop('hift')
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides=override_dict)
|
||||
try:
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides={**override_dict, 'qwen_pretrain_path': args.qwen_pretrain_path})
|
||||
except Exception:
|
||||
with open(args.config, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides=override_dict)
|
||||
if gan is True:
|
||||
configs['train_conf'] = configs['train_conf_gan']
|
||||
configs['train_conf'].update(vars(args))
|
||||
|
||||
Reference in New Issue
Block a user