Files
silero-vad/silero-vad.ipynb
adamnsandle 74f759c8f8 add onnx vad
2021-12-17 14:48:32 +00:00

440 lines
10 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "FpMplOCA2Fwp"
},
"source": [
"#VAD"
]
},
{
"cell_type": "markdown",
"metadata": {
"heading_collapsed": true,
"id": "62A6F_072Fwq"
},
"source": [
"## Install Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true,
"id": "5w5AkskZ2Fwr"
},
"outputs": [],
"source": [
"#@title Install and Import Dependencies\n",
"\n",
"# this assumes that you have a relevant version of PyTorch installed\n",
"!pip install -q torchaudio\n",
"\n",
"SAMPLING_RATE = 16000\n",
"\n",
"import torch\n",
"torch.set_num_threads(1)\n",
"\n",
"from IPython.display import Audio\n",
"from pprint import pprint\n",
"# download example\n",
"torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en.wav', 'en_example.wav')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pSifus5IilRp"
},
"outputs": [],
"source": [
"USE_ONNX = False # change this to True if you want to test onnx model\n",
"if USE_ONNX:\n",
" !pip install -q onnxruntime\n",
" \n",
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
" model='silero_vad',\n",
" force_reload=True,\n",
" onnx=USE_ONNX)\n",
"\n",
"(get_speech_timestamps,\n",
" save_audio,\n",
" read_audio,\n",
" VADIterator,\n",
" collect_chunks) = utils"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fXbbaUO3jsrw"
},
"source": [
"## Full Audio"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RAfJPb_a-Auj"
},
"source": [
"**Speech timestapms from full audio**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "aI_eydBPjsrx"
},
"outputs": [],
"source": [
"wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
"# get speech timestamps from full audio file\n",
"speech_timestamps = get_speech_timestamps(wav, model, sampling_rate=SAMPLING_RATE)\n",
"pprint(speech_timestamps)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "OuEobLchjsry"
},
"outputs": [],
"source": [
"# merge all speech chunks to one audio\n",
"save_audio('only_speech.wav',\n",
" collect_chunks(speech_timestamps, wav), sampling_rate=SAMPLING_RATE) \n",
"Audio('only_speech.wav')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iDKQbVr8jsry"
},
"source": [
"## Stream imitation example"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "q-lql_2Wjsry"
},
"outputs": [],
"source": [
"## using VADIterator class\n",
"\n",
"vad_iterator = VADIterator(model)\n",
"wav = read_audio(f'en_example.wav', sampling_rate=SAMPLING_RATE)\n",
"\n",
"window_size_samples = 1536 # number of samples in a single audio chunk\n",
"for i in range(0, len(wav), window_size_samples):\n",
" speech_dict = vad_iterator(wav[i: i+ window_size_samples], return_seconds=True)\n",
" if speech_dict:\n",
" print(speech_dict, end=' ')\n",
"vad_iterator.reset_states() # reset model states after each audio"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BX3UgwwB2Fwv"
},
"outputs": [],
"source": [
"## just probabilities\n",
"\n",
"wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
"speech_probs = []\n",
"window_size_samples = 1536\n",
"for i in range(0, len(wav), window_size_samples):\n",
" speech_prob = model(wav[i: i+ window_size_samples], SAMPLING_RATE).item()\n",
" speech_probs.append(speech_prob)\n",
"vad_iterator.reset_states() # reset model states after each audio\n",
"\n",
"print(speech_probs[:10]) # first 10 chunks predicts"
]
},
{
"cell_type": "markdown",
"metadata": {
"heading_collapsed": true,
"id": "36jY0niD2Fww"
},
"source": [
"# Number detector"
]
},
{
"cell_type": "markdown",
"metadata": {
"heading_collapsed": true,
"hidden": true,
"id": "scd1DlS42Fwx"
},
"source": [
"## Install Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true,
"id": "Kq5gQuYq2Fwx"
},
"outputs": [],
"source": [
"#@title Install and Import Dependencies\n",
"\n",
"# this assumes that you have a relevant version of PyTorch installed\n",
"!pip install -q torchaudio\n",
"\n",
"SAMPLING_RATE = 16000\n",
"\n",
"import torch\n",
"torch.set_num_threads(1)\n",
"\n",
"from IPython.display import Audio\n",
"from pprint import pprint\n",
"# download example\n",
"torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en_num.wav', 'en_number_example.wav')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "dPwCFHmFycUF"
},
"outputs": [],
"source": [
"USE_ONNX = False # change this to True if you want to test onnx model\n",
"if USE_ONNX:\n",
" !pip install -q onnxruntime\n",
" \n",
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
" model='silero_number_detector',\n",
" force_reload=True,\n",
" onnx=USE_ONNX)\n",
"\n",
"(get_number_ts,\n",
" save_audio,\n",
" read_audio,\n",
" collect_chunks,\n",
" drop_chunks) = utils\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"heading_collapsed": true,
"hidden": true,
"id": "qhPa30ij2Fwy"
},
"source": [
"## Full audio"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true,
"id": "EXpau6xq2Fwy"
},
"outputs": [],
"source": [
"wav = read_audio('en_number_example.wav', sampling_rate=SAMPLING_RATE)\n",
"# get number timestamps from full audio file\n",
"number_timestamps = get_number_ts(wav, model)\n",
"pprint(number_timestamps)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true,
"id": "u-KfXRhZ2Fwy"
},
"outputs": [],
"source": [
"# convert ms in timestamps to samples\n",
"for timestamp in number_timestamps:\n",
" timestamp['start'] = int(timestamp['start'] * SAMPLING_RATE / 1000)\n",
" timestamp['end'] = int(timestamp['end'] * SAMPLING_RATE / 1000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true,
"id": "iwYEC4aZ2Fwy"
},
"outputs": [],
"source": [
"# merge all number chunks to one audio\n",
"save_audio('only_numbers.wav',\n",
" collect_chunks(number_timestamps, wav), SAMPLING_RATE) \n",
"Audio('only_numbers.wav')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true,
"id": "fHaYejX12Fwy"
},
"outputs": [],
"source": [
"# drop all number chunks from audio\n",
"save_audio('no_numbers.wav',\n",
" drop_chunks(number_timestamps, wav), SAMPLING_RATE) \n",
"Audio('no_numbers.wav')"
]
},
{
"cell_type": "markdown",
"metadata": {
"heading_collapsed": true,
"id": "PnKtJKbq2Fwz"
},
"source": [
"# Language detector"
]
},
{
"cell_type": "markdown",
"metadata": {
"heading_collapsed": true,
"hidden": true,
"id": "F5cAmMbP2Fwz"
},
"source": [
"## Install Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true,
"id": "Zu9D0t6n2Fwz"
},
"outputs": [],
"source": [
"#@title Install and Import Dependencies\n",
"\n",
"# this assumes that you have a relevant version of PyTorch installed\n",
"!pip install -q torchaudio\n",
"\n",
"SAMPLING_RATE = 16000\n",
"\n",
"import torch\n",
"torch.set_num_threads(1)\n",
"\n",
"from IPython.display import Audio\n",
"from pprint import pprint\n",
"# download example\n",
"torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en.wav', 'en_example.wav')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "JfRKDZiRztFe"
},
"outputs": [],
"source": [
"USE_ONNX = False # change this to True if you want to test onnx model\n",
"if USE_ONNX:\n",
" !pip install -q onnxruntime\n",
" \n",
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
" model='silero_lang_detector',\n",
" force_reload=True,\n",
" onnx=USE_ONNX)\n",
"\n",
"get_language, read_audio = utils"
]
},
{
"cell_type": "markdown",
"metadata": {
"heading_collapsed": true,
"hidden": true,
"id": "iC696eMX2Fwz"
},
"source": [
"## Full audio"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true,
"id": "c8UYnYBF2Fw0"
},
"outputs": [],
"source": [
"wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
"lang = get_language(wav, model)\n",
"print(lang)"
]
}
],
"metadata": {
"colab": {
"name": "silero-vad.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 0
}