Files
silero-vad/tuning/utils.py
2024-08-19 14:36:45 +00:00

300 lines
9.6 KiB
Python

import torch
import torch.nn as nn
from torch.utils.data import Dataset
import torchaudio
import numpy as np
import random
import gc
from sklearn.metrics import roc_auc_score
from tqdm import tqdm
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
def read_audio(path: str,
sampling_rate: int = 16000,
normalize=False):
wav, sr = torchaudio.load(path)
if wav.size(0) > 1:
wav = wav.mean(dim=0, keepdim=True)
if sampling_rate:
if sr != sampling_rate:
transform = torchaudio.transforms.Resample(orig_freq=sr,
new_freq=sampling_rate)
wav = transform(wav)
sr = sampling_rate
if normalize and wav.abs().max() != 0:
wav = wav / wav.abs().max()
return wav.squeeze(0)
def build_audiomentations_augs(p):
from audiomentations import SomeOf, AirAbsorption, BandPassFilter, BandStopFilter, ClippingDistortion, HighPassFilter, HighShelfFilter, \
LowPassFilter, LowShelfFilter, Mp3Compression, PeakingFilter, PitchShift, RoomSimulator, SevenBandParametricEQ, \
Aliasing, AddGaussianNoise
transforms = [Aliasing(p=1),
AddGaussianNoise(p=1),
AirAbsorption(p=1),
BandPassFilter(p=1),
BandStopFilter(p=1),
ClippingDistortion(p=1),
HighPassFilter(p=1),
HighShelfFilter(p=1),
LowPassFilter(p=1),
LowShelfFilter(p=1),
Mp3Compression(p=1),
PeakingFilter(p=1),
PitchShift(p=1),
RoomSimulator(p=1, leave_length_unchanged=True),
SevenBandParametricEQ(p=1)]
tr = SomeOf((1, 3), transforms=transforms, p=p)
return tr
class SileroVadDataset(Dataset):
def __init__(self,
config,
mode='train'):
self.num_samples = 512 # constant, do not change
self.sr = 16000 # constant, do not change
self.resample_to_8k = config.tune_8k
self.noise_loss = config.noise_loss
self.max_train_length_sec = config.max_train_length_sec
self.max_train_length_samples = config.max_train_length_sec * self.sr
assert self.max_train_length_samples % self.num_samples == 0
assert mode in ['train', 'val']
dataset_path = config.train_dataset_path if mode == 'train' else config.val_dataset_path
self.dataframe = pd.read_feather(dataset_path).reset_index(drop=True)
self.index_dict = self.dataframe.to_dict('index')
self.mode = mode
print(f'DATASET SIZE : {len(self.dataframe)}')
if mode == 'train':
self.augs = build_audiomentations_augs(p=config.aug_prob)
else:
self.augs = None
def __getitem__(self, idx):
idx = None if self.mode == 'train' else idx
wav, gt, mask = self.load_speech_sample(idx)
if self.mode == 'train':
wav = self.add_augs(wav)
if len(wav) > self.max_train_length_samples:
wav = wav[:self.max_train_length_samples]
gt = gt[:int(self.max_train_length_samples / self.num_samples)]
mask = mask[:int(self.max_train_length_samples / self.num_samples)]
wav = torch.FloatTensor(wav)
if self.resample_to_8k:
transform = torchaudio.transforms.Resample(orig_freq=self.sr,
new_freq=8000)
wav = transform(wav)
return wav, torch.FloatTensor(gt), torch.from_numpy(mask)
def __len__(self):
return len(self.index_dict)
def load_speech_sample(self, idx=None):
if idx is None:
idx = random.randint(0, len(self.index_dict) - 1)
wav = read_audio(self.index_dict[idx]['audio_path'], self.sr).numpy()
if len(wav) % self.num_samples != 0:
pad_num = self.num_samples - (len(wav) % (self.num_samples))
wav = np.pad(wav, (0, pad_num), 'constant', constant_values=0)
gt, mask = self.get_ground_truth_annotated(self.index_dict[idx]['speech_ts'], len(wav))
assert len(gt) == len(wav) / self.num_samples
mask[gt == 0]
return wav, gt, mask
def get_ground_truth_annotated(self, annotation, audio_length_samples):
gt = np.zeros(audio_length_samples)
for i in annotation:
gt[int(i['start'] * self.sr): int(i['end'] * self.sr)] = 1
squeezed_predicts = np.average(gt.reshape(-1, self.num_samples), axis=1)
squeezed_predicts = (squeezed_predicts > 0.5).astype(int)
mask = np.ones(len(squeezed_predicts))
mask[squeezed_predicts == 0] = self.noise_loss
return squeezed_predicts, mask
def add_augs(self, wav):
while True:
try:
wav_aug = self.augs(wav, self.sr)
if np.isnan(wav_aug.max()) or np.isnan(wav_aug.min()):
return wav
return wav_aug
except Exception as e:
continue
def SileroVadPadder(batch):
wavs = [batch[i][0] for i in range(len(batch))]
labels = [batch[i][1] for i in range(len(batch))]
masks = [batch[i][2] for i in range(len(batch))]
wavs = torch.nn.utils.rnn.pad_sequence(
wavs, batch_first=True, padding_value=0)
labels = torch.nn.utils.rnn.pad_sequence(
labels, batch_first=True, padding_value=0)
masks = torch.nn.utils.rnn.pad_sequence(
masks, batch_first=True, padding_value=0)
return wavs, labels, masks
class VADDecoderRNNJIT(nn.Module):
def __init__(self):
super(VADDecoderRNNJIT, self).__init__()
self.rnn = nn.LSTMCell(128, 128)
self.decoder = nn.Sequential(nn.Dropout(0.1),
nn.ReLU(),
nn.Conv1d(128, 1, kernel_size=1),
nn.Sigmoid())
def forward(self, x, state=torch.zeros(0)):
x = x.squeeze(-1)
if len(state):
h, c = self.rnn(x, (state[0], state[1]))
else:
h, c = self.rnn(x)
x = h.unsqueeze(-1).float()
state = torch.stack([h, c])
x = self.decoder(x)
return x, state
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def train(config,
loader,
jit_model,
decoder,
criterion,
optimizer,
device):
losses = AverageMeter()
decoder.train()
context_size = 32 if config.tune_8k else 64
num_samples = 256 if config.tune_8k else 512
stft_layer = jit_model._model_8k.stft if config.tune_8k else jit_model._model.stft
encoder_layer = jit_model._model_8k.encoder if config.tune_8k else jit_model._model.encoder
with torch.enable_grad():
for _, (x, targets, masks) in tqdm(enumerate(loader), total=len(loader)):
targets = targets.to(device)
x = x.to(device)
masks = masks.to(device)
x = torch.nn.functional.pad(x, (context_size, 0))
outs = []
state = torch.zeros(0)
for i in range(context_size, x.shape[1], num_samples):
input_ = x[:, i-context_size:i+num_samples]
out = stft_layer(input_)
out = encoder_layer(out)
out, state = decoder(out, state)
outs.append(out)
stacked = torch.cat(outs, dim=2).squeeze(1)
loss = criterion(stacked, targets)
loss = (loss * masks).mean()
loss.backward()
optimizer.step()
losses.update(loss.item(), masks.numel())
torch.cuda.empty_cache()
gc.collect()
return losses.avg
def validate(config,
loader,
jit_model,
decoder,
criterion,
device):
losses = AverageMeter()
decoder.eval()
predicts = []
gts = []
context_size = 32 if config.tune_8k else 64
num_samples = 256 if config.tune_8k else 512
stft_layer = jit_model._model_8k.stft if config.tune_8k else jit_model._model.stft
encoder_layer = jit_model._model_8k.encoder if config.tune_8k else jit_model._model.encoder
with torch.no_grad():
for _, (x, targets, masks) in tqdm(enumerate(loader), total=len(loader)):
targets = targets.to(device)
x = x.to(device)
masks = masks.to(device)
x = torch.nn.functional.pad(x, (context_size, 0))
outs = []
state = torch.zeros(0)
for i in range(context_size, x.shape[1], num_samples):
input_ = x[:, i-context_size:i+num_samples]
out = stft_layer(input_)
out = encoder_layer(out)
out, state = decoder(out, state)
outs.append(out)
stacked = torch.cat(outs, dim=2).squeeze(1)
predicts.extend(stacked[masks != 0].tolist())
gts.extend(targets[masks != 0].tolist())
loss = criterion(stacked, targets)
loss = (loss * masks).mean()
losses.update(loss.item(), masks.numel())
score = roc_auc_score(gts, predicts)
torch.cuda.empty_cache()
gc.collect()
return losses.avg, round(score, 3)