mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-04 17:39:22 +08:00
589 lines
21 KiB
Python
589 lines
21 KiB
Python
import torch
|
|
import torchaudio
|
|
from typing import List
|
|
from itertools import repeat
|
|
from collections import deque
|
|
import torch.nn.functional as F
|
|
|
|
|
|
torchaudio.set_audio_backend("soundfile") # switch backend
|
|
|
|
|
|
languages = ['ru', 'en', 'de', 'es']
|
|
|
|
|
|
class IterativeMedianMeter():
|
|
def __init__(self):
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.median = 0
|
|
self.counts = {}
|
|
for i in range(0, 101, 1):
|
|
self.counts[i / 100] = 0
|
|
self.total_values = 0
|
|
|
|
def __call__(self, val):
|
|
self.total_values += 1
|
|
rounded = round(abs(val), 2)
|
|
self.counts[rounded] += 1
|
|
bin_sum = 0
|
|
for j in self.counts:
|
|
bin_sum += self.counts[j]
|
|
if bin_sum >= self.total_values / 2:
|
|
self.median = j
|
|
break
|
|
return self.median
|
|
|
|
|
|
def validate(model,
|
|
inputs: torch.Tensor):
|
|
with torch.no_grad():
|
|
outs = model(inputs)
|
|
return outs
|
|
|
|
|
|
def read_audio(path: str,
|
|
target_sr: int = 16000):
|
|
|
|
assert torchaudio.get_audio_backend() == 'soundfile'
|
|
wav, sr = torchaudio.load(path)
|
|
|
|
if wav.size(0) > 1:
|
|
wav = wav.mean(dim=0, keepdim=True)
|
|
|
|
if sr != target_sr:
|
|
transform = torchaudio.transforms.Resample(orig_freq=sr,
|
|
new_freq=target_sr)
|
|
wav = transform(wav)
|
|
sr = target_sr
|
|
|
|
assert sr == target_sr
|
|
return wav.squeeze(0)
|
|
|
|
|
|
def save_audio(path: str,
|
|
tensor: torch.Tensor,
|
|
sr: int = 16000):
|
|
torchaudio.save(path, tensor.unsqueeze(0), sr)
|
|
|
|
|
|
def init_jit_model(model_path: str,
|
|
device=torch.device('cpu')):
|
|
torch.set_grad_enabled(False)
|
|
model = torch.jit.load(model_path, map_location=device)
|
|
model.eval()
|
|
return model
|
|
|
|
|
|
def get_speech_ts(wav: torch.Tensor,
|
|
model,
|
|
trig_sum: float = 0.25,
|
|
neg_trig_sum: float = 0.07,
|
|
num_steps: int = 8,
|
|
batch_size: int = 200,
|
|
num_samples_per_window: int = 4000,
|
|
min_speech_samples: int = 10000, #samples
|
|
min_silence_samples: int = 500,
|
|
run_function=validate,
|
|
visualize_probs=False):
|
|
|
|
num_samples = num_samples_per_window
|
|
assert num_samples % num_steps == 0
|
|
step = int(num_samples / num_steps) # stride / hop
|
|
outs = []
|
|
to_concat = []
|
|
for i in range(0, len(wav), step):
|
|
chunk = wav[i: i+num_samples]
|
|
if len(chunk) < num_samples:
|
|
chunk = F.pad(chunk, (0, num_samples - len(chunk)))
|
|
to_concat.append(chunk.unsqueeze(0))
|
|
if len(to_concat) >= batch_size:
|
|
chunks = torch.Tensor(torch.cat(to_concat, dim=0))
|
|
out = run_function(model, chunks)
|
|
outs.append(out)
|
|
to_concat = []
|
|
|
|
if to_concat:
|
|
chunks = torch.Tensor(torch.cat(to_concat, dim=0))
|
|
out = run_function(model, chunks)
|
|
outs.append(out)
|
|
|
|
outs = torch.cat(outs, dim=0)
|
|
|
|
buffer = deque(maxlen=num_steps) # maxlen reached => first element dropped
|
|
triggered = False
|
|
speeches = []
|
|
current_speech = {}
|
|
if visualize_probs:
|
|
import pandas as pd
|
|
smoothed_probs = []
|
|
|
|
speech_probs = outs[:, 1] # this is very misleading
|
|
temp_end = 0
|
|
for i, predict in enumerate(speech_probs): # add name
|
|
buffer.append(predict)
|
|
smoothed_prob = (sum(buffer) / len(buffer))
|
|
if visualize_probs:
|
|
smoothed_probs.append(float(smoothed_prob))
|
|
if (smoothed_prob >= trig_sum) and temp_end:
|
|
temp_end=0
|
|
if (smoothed_prob >= trig_sum) and not triggered:
|
|
triggered = True
|
|
current_speech['start'] = step * max(0, i-num_steps)
|
|
continue
|
|
if (smoothed_prob < neg_trig_sum) and triggered:
|
|
if not temp_end:
|
|
temp_end = step * i
|
|
if step * i - temp_end < min_silence_samples:
|
|
continue
|
|
else:
|
|
current_speech['end'] = temp_end
|
|
if (current_speech['end'] - current_speech['start']) > min_speech_samples:
|
|
speeches.append(current_speech)
|
|
temp_end = 0
|
|
current_speech = {}
|
|
triggered = False
|
|
continue
|
|
if current_speech:
|
|
current_speech['end'] = len(wav)
|
|
speeches.append(current_speech)
|
|
|
|
if visualize_probs:
|
|
pd.DataFrame({'probs':smoothed_probs}).plot(figsize=(16,8))
|
|
return speeches
|
|
|
|
|
|
def get_speech_ts_adaptive(wav: torch.Tensor,
|
|
model,
|
|
batch_size: int = 200,
|
|
step: int = 500,
|
|
num_samples_per_window: int = 4000, # Number of samples per audio chunk to feed to NN (4000 for 16k SR, 2000 for 8k SR is optimal)
|
|
min_speech_samples: int = 10000, # samples
|
|
min_silence_samples: int = 4000,
|
|
speech_pad_samples: int = 2000,
|
|
run_function=validate,
|
|
visualize_probs=False,
|
|
device='cpu'):
|
|
"""
|
|
This function is used for splitting long audios into speech chunks using silero VAD
|
|
Attention! All default sample rate values are optimal for 16000 sample rate model, if you are using 8000 sample rate model optimal values are half as much!
|
|
|
|
Parameters
|
|
----------
|
|
batch_size: int
|
|
batch size to feed to silero VAD (default - 200)
|
|
|
|
step: int
|
|
step size in samples, (default - 500)
|
|
|
|
num_samples_per_window: int
|
|
window size in samples (chunk length in samples to feed to NN, default - 4000)
|
|
|
|
min_speech_samples: int
|
|
if speech duration is shorter than this value, do not consider it speech (default - 10000)
|
|
|
|
min_silence_samples: int
|
|
number of samples to wait before considering as the end of speech (default - 4000)
|
|
|
|
speech_pad_samples: int
|
|
widen speech by this amount of samples each side (default - 2000)
|
|
|
|
run_function: function
|
|
function to use for the model call
|
|
|
|
visualize_probs: bool
|
|
whether draw prob hist or not (default: False)
|
|
|
|
device: string
|
|
torch device to use for the model call (default - "cpu")
|
|
|
|
Returns
|
|
----------
|
|
speeches: list
|
|
list containing ends and beginnings of speech chunks (in samples)
|
|
"""
|
|
|
|
num_samples = num_samples_per_window
|
|
num_steps = int(num_samples / step)
|
|
assert min_silence_samples >= step
|
|
outs = []
|
|
to_concat = []
|
|
for i in range(0, len(wav), step):
|
|
chunk = wav[i: i+num_samples]
|
|
if len(chunk) < num_samples:
|
|
chunk = F.pad(chunk, (0, num_samples - len(chunk)))
|
|
to_concat.append(chunk.unsqueeze(0))
|
|
if len(to_concat) >= batch_size:
|
|
chunks = torch.Tensor(torch.cat(to_concat, dim=0)).to(device)
|
|
out = run_function(model, chunks)
|
|
outs.append(out)
|
|
to_concat = []
|
|
|
|
if to_concat:
|
|
chunks = torch.Tensor(torch.cat(to_concat, dim=0)).to(device)
|
|
out = run_function(model, chunks)
|
|
outs.append(out)
|
|
|
|
outs = torch.cat(outs, dim=0).cpu()
|
|
|
|
buffer = deque(maxlen=num_steps)
|
|
triggered = False
|
|
speeches = []
|
|
smoothed_probs = []
|
|
current_speech = {}
|
|
speech_probs = outs[:, 1] # 0 index for silence probs, 1 index for speech probs
|
|
median_probs = speech_probs.median()
|
|
|
|
trig_sum = 0.89 * median_probs + 0.08 # 0.08 when median is zero, 0.97 when median is 1
|
|
|
|
temp_end = 0
|
|
for i, predict in enumerate(speech_probs):
|
|
buffer.append(predict)
|
|
smoothed_prob = max(buffer)
|
|
if visualize_probs:
|
|
smoothed_probs.append(float(smoothed_prob))
|
|
if (smoothed_prob >= trig_sum) and temp_end:
|
|
temp_end = 0
|
|
if (smoothed_prob >= trig_sum) and not triggered:
|
|
triggered = True
|
|
current_speech['start'] = step * max(0, i-num_steps)
|
|
continue
|
|
if (smoothed_prob < trig_sum) and triggered:
|
|
if not temp_end:
|
|
temp_end = step * i
|
|
if step * i - temp_end < min_silence_samples:
|
|
continue
|
|
else:
|
|
current_speech['end'] = temp_end
|
|
if (current_speech['end'] - current_speech['start']) > min_speech_samples:
|
|
speeches.append(current_speech)
|
|
temp_end = 0
|
|
current_speech = {}
|
|
triggered = False
|
|
continue
|
|
if current_speech:
|
|
current_speech['end'] = len(wav)
|
|
speeches.append(current_speech)
|
|
if visualize_probs:
|
|
pd.DataFrame({'probs': smoothed_probs}).plot(figsize=(16, 8))
|
|
|
|
for ts in speeches:
|
|
ts['start'] = max(0, ts['start'] - speech_pad_samples)
|
|
ts['end'] += speech_pad_samples
|
|
|
|
return speeches
|
|
|
|
|
|
def get_number_ts(wav: torch.Tensor,
|
|
model,
|
|
model_stride=8,
|
|
hop_length=160,
|
|
sample_rate=16000,
|
|
run_function=validate):
|
|
wav = torch.unsqueeze(wav, dim=0)
|
|
perframe_logits = run_function(model, wav)[0]
|
|
perframe_preds = torch.argmax(torch.softmax(perframe_logits, dim=1), dim=1).squeeze() # (1, num_frames_strided)
|
|
extended_preds = []
|
|
for i in perframe_preds:
|
|
extended_preds.extend([i.item()] * model_stride)
|
|
# len(extended_preds) is *num_frames_real*; for each frame of audio we know if it has a number in it.
|
|
triggered = False
|
|
timings = []
|
|
cur_timing = {}
|
|
for i, pred in enumerate(extended_preds):
|
|
if pred == 1:
|
|
if not triggered:
|
|
cur_timing['start'] = int((i * hop_length) / (sample_rate / 1000))
|
|
triggered = True
|
|
elif pred == 0:
|
|
if triggered:
|
|
cur_timing['end'] = int((i * hop_length) / (sample_rate / 1000))
|
|
timings.append(cur_timing)
|
|
cur_timing = {}
|
|
triggered = False
|
|
if cur_timing:
|
|
cur_timing['end'] = int(len(wav) / (sample_rate / 1000))
|
|
timings.append(cur_timing)
|
|
return timings
|
|
|
|
|
|
def get_language(wav: torch.Tensor,
|
|
model,
|
|
run_function=validate):
|
|
wav = torch.unsqueeze(wav, dim=0)
|
|
lang_logits = run_function(model, wav)[2]
|
|
lang_pred = torch.argmax(torch.softmax(lang_logits, dim=1), dim=1).item() # from 0 to len(languages) - 1
|
|
assert lang_pred < len(languages)
|
|
return languages[lang_pred]
|
|
|
|
|
|
class VADiterator:
|
|
def __init__(self,
|
|
trig_sum: float = 0.26,
|
|
neg_trig_sum: float = 0.07,
|
|
num_steps: int = 8,
|
|
num_samples_per_window: int = 4000):
|
|
self.num_samples = num_samples_per_window
|
|
self.num_steps = num_steps
|
|
assert self.num_samples % num_steps == 0
|
|
self.step = int(self.num_samples / num_steps) # 500 samples is good enough
|
|
self.prev = torch.zeros(self.num_samples)
|
|
self.last = False
|
|
self.triggered = False
|
|
self.buffer = deque(maxlen=num_steps)
|
|
self.num_frames = 0
|
|
self.trig_sum = trig_sum
|
|
self.neg_trig_sum = neg_trig_sum
|
|
self.current_name = ''
|
|
|
|
def refresh(self):
|
|
self.prev = torch.zeros(self.num_samples)
|
|
self.last = False
|
|
self.triggered = False
|
|
self.buffer = deque(maxlen=self.num_steps)
|
|
self.num_frames = 0
|
|
|
|
def prepare_batch(self, wav_chunk, name=None):
|
|
if (name is not None) and (name != self.current_name):
|
|
self.refresh()
|
|
self.current_name = name
|
|
assert len(wav_chunk) <= self.num_samples
|
|
self.num_frames += len(wav_chunk)
|
|
if len(wav_chunk) < self.num_samples:
|
|
wav_chunk = F.pad(wav_chunk, (0, self.num_samples - len(wav_chunk))) # short chunk => eof audio
|
|
self.last = True
|
|
|
|
stacked = torch.cat([self.prev, wav_chunk])
|
|
self.prev = wav_chunk
|
|
|
|
overlap_chunks = [stacked[i:i+self.num_samples].unsqueeze(0)
|
|
for i in range(self.step, self.num_samples+1, self.step)]
|
|
return torch.cat(overlap_chunks, dim=0)
|
|
|
|
def state(self, model_out):
|
|
current_speech = {}
|
|
speech_probs = model_out[:, 1] # this is very misleading
|
|
for i, predict in enumerate(speech_probs):
|
|
self.buffer.append(predict)
|
|
if ((sum(self.buffer) / len(self.buffer)) >= self.trig_sum) and not self.triggered:
|
|
self.triggered = True
|
|
current_speech[self.num_frames - (self.num_steps-i) * self.step] = 'start'
|
|
if ((sum(self.buffer) / len(self.buffer)) < self.neg_trig_sum) and self.triggered:
|
|
current_speech[self.num_frames - (self.num_steps-i) * self.step] = 'end'
|
|
self.triggered = False
|
|
if self.triggered and self.last:
|
|
current_speech[self.num_frames] = 'end'
|
|
if self.last:
|
|
self.refresh()
|
|
return current_speech, self.current_name
|
|
|
|
|
|
class VADiteratorAdaptive:
|
|
def __init__(self,
|
|
trig_sum: float = 0.26,
|
|
neg_trig_sum: float = 0.06,
|
|
step: int = 500,
|
|
num_samples_per_window: int = 4000,
|
|
speech_pad_samples: int = 1000,
|
|
accum_period: int = 50):
|
|
"""
|
|
This class is used for streaming silero VAD usage
|
|
|
|
Parameters
|
|
----------
|
|
trig_sum: float
|
|
trigger value for speech probability, probs above this value are considered speech, switch to TRIGGERED state (default - 0.26)
|
|
|
|
neg_trig_sum: float
|
|
in triggered state probabilites below this value are considered nonspeech, switch to NONTRIGGERED state (default - 0.06)
|
|
|
|
step: int
|
|
step size in samples, (default - 500)
|
|
|
|
num_samples_per_window: int
|
|
window size in samples (chunk length in samples to feed to NN, default - 4000)
|
|
|
|
speech_pad_samples: int
|
|
widen speech by this amount of samples each side (default - 1000)
|
|
|
|
accum_period: int
|
|
number of chunks / iterations to wait before switching from constant (initial) trig and neg_trig coeffs to adaptive median coeffs (default - 50)
|
|
|
|
"""
|
|
self.num_samples = num_samples_per_window
|
|
self.num_steps = int(num_samples_per_window / step)
|
|
self.step = step
|
|
self.prev = torch.zeros(self.num_samples)
|
|
self.last = False
|
|
self.triggered = False
|
|
self.buffer = deque(maxlen=self.num_steps)
|
|
self.num_frames = 0
|
|
self.trig_sum = trig_sum
|
|
self.neg_trig_sum = neg_trig_sum
|
|
self.current_name = ''
|
|
self.median_meter = IterativeMedianMeter()
|
|
self.median = 0
|
|
self.total_steps = 0
|
|
self.accum_period = accum_period
|
|
self.speech_pad_samples = speech_pad_samples
|
|
|
|
def refresh(self):
|
|
self.prev = torch.zeros(self.num_samples)
|
|
self.last = False
|
|
self.triggered = False
|
|
self.buffer = deque(maxlen=self.num_steps)
|
|
self.num_frames = 0
|
|
self.median_meter.reset()
|
|
self.median = 0
|
|
self.total_steps = 0
|
|
|
|
def prepare_batch(self, wav_chunk, name=None):
|
|
if (name is not None) and (name != self.current_name):
|
|
self.refresh()
|
|
self.current_name = name
|
|
assert len(wav_chunk) <= self.num_samples
|
|
self.num_frames += len(wav_chunk)
|
|
if len(wav_chunk) < self.num_samples:
|
|
wav_chunk = F.pad(wav_chunk, (0, self.num_samples - len(wav_chunk))) # short chunk => eof audio
|
|
self.last = True
|
|
|
|
stacked = torch.cat([self.prev, wav_chunk])
|
|
self.prev = wav_chunk
|
|
|
|
overlap_chunks = [stacked[i:i+self.num_samples].unsqueeze(0)
|
|
for i in range(self.step, self.num_samples+1, self.step)]
|
|
return torch.cat(overlap_chunks, dim=0)
|
|
|
|
def state(self, model_out):
|
|
current_speech = {}
|
|
speech_probs = model_out[:, 1] # 0 index for silence probs, 1 index for speech probs
|
|
for i, predict in enumerate(speech_probs):
|
|
self.median = self.median_meter(predict.item())
|
|
if self.total_steps < self.accum_period:
|
|
trig_sum = self.trig_sum
|
|
neg_trig_sum = self.neg_trig_sum
|
|
else:
|
|
trig_sum = 0.89 * self.median + 0.08 # 0.08 when median is zero, 0.97 when median is 1
|
|
neg_trig_sum = 0.6 * self.median
|
|
self.total_steps += 1
|
|
self.buffer.append(predict)
|
|
smoothed_prob = max(self.buffer)
|
|
if (smoothed_prob >= trig_sum) and not self.triggered:
|
|
self.triggered = True
|
|
current_speech[max(0, self.num_frames - (self.num_steps-i) * self.step - self.speech_pad_samples)] = 'start'
|
|
if (smoothed_prob < neg_trig_sum) and self.triggered:
|
|
current_speech[self.num_frames - (self.num_steps-i) * self.step + self.speech_pad_samples] = 'end'
|
|
self.triggered = False
|
|
if self.triggered and self.last:
|
|
current_speech[self.num_frames] = 'end'
|
|
if self.last:
|
|
self.refresh()
|
|
return current_speech, self.current_name
|
|
|
|
|
|
def state_generator(model,
|
|
audios: List[str],
|
|
onnx: bool = False,
|
|
trig_sum: float = 0.26,
|
|
neg_trig_sum: float = 0.07,
|
|
num_steps: int = 8,
|
|
num_samples_per_window: int = 4000,
|
|
audios_in_stream: int = 2,
|
|
run_function=validate):
|
|
VADiters = [VADiterator(trig_sum, neg_trig_sum, num_steps, num_samples_per_window) for i in range(audios_in_stream)]
|
|
for i, current_pieces in enumerate(stream_imitator(audios, audios_in_stream, num_samples_per_window)):
|
|
for_batch = [x.prepare_batch(*y) for x, y in zip(VADiters, current_pieces)]
|
|
batch = torch.cat(for_batch)
|
|
|
|
outs = run_function(model, batch)
|
|
vad_outs = torch.split(outs, num_steps)
|
|
|
|
states = []
|
|
for x, y in zip(VADiters, vad_outs):
|
|
cur_st = x.state(y)
|
|
if cur_st[0]:
|
|
states.append(cur_st)
|
|
yield states
|
|
|
|
|
|
def stream_imitator(audios: List[str],
|
|
audios_in_stream: int,
|
|
num_samples_per_window: int = 4000):
|
|
audio_iter = iter(audios)
|
|
iterators = []
|
|
num_samples = num_samples_per_window
|
|
# initial wavs
|
|
for i in range(audios_in_stream):
|
|
next_wav = next(audio_iter)
|
|
wav = read_audio(next_wav)
|
|
wav_chunks = iter([(wav[i:i+num_samples], next_wav) for i in range(0, len(wav), num_samples)])
|
|
iterators.append(wav_chunks)
|
|
print('Done initial Loading')
|
|
good_iters = audios_in_stream
|
|
while True:
|
|
values = []
|
|
for i, it in enumerate(iterators):
|
|
try:
|
|
out, wav_name = next(it)
|
|
except StopIteration:
|
|
try:
|
|
next_wav = next(audio_iter)
|
|
print('Loading next wav: ', next_wav)
|
|
wav = read_audio(next_wav)
|
|
iterators[i] = iter([(wav[i:i+num_samples], next_wav) for i in range(0, len(wav), num_samples)])
|
|
out, wav_name = next(iterators[i])
|
|
except StopIteration:
|
|
good_iters -= 1
|
|
iterators[i] = repeat((torch.zeros(num_samples), 'junk'))
|
|
out, wav_name = next(iterators[i])
|
|
if good_iters == 0:
|
|
return
|
|
values.append((out, wav_name))
|
|
yield values
|
|
|
|
|
|
def single_audio_stream(model,
|
|
audio: torch.Tensor,
|
|
num_samples_per_window:int = 4000,
|
|
run_function=validate,
|
|
iterator_type='basic',
|
|
**kwargs):
|
|
|
|
num_samples = num_samples_per_window
|
|
if iterator_type == 'basic':
|
|
VADiter = VADiterator(num_samples_per_window=num_samples_per_window, **kwargs)
|
|
elif iterator_type == 'adaptive':
|
|
VADiter = VADiteratorAdaptive(num_samples_per_window=num_samples_per_window, **kwargs)
|
|
|
|
wav = read_audio(audio)
|
|
wav_chunks = iter([wav[i:i+num_samples] for i in range(0, len(wav), num_samples)])
|
|
for chunk in wav_chunks:
|
|
batch = VADiter.prepare_batch(chunk)
|
|
|
|
outs = run_function(model, batch)
|
|
|
|
states = []
|
|
state = VADiter.state(outs)
|
|
if state[0]:
|
|
states.append(state[0])
|
|
yield states
|
|
|
|
|
|
def collect_chunks(tss: List[dict],
|
|
wav: torch.Tensor):
|
|
chunks = []
|
|
for i in tss:
|
|
chunks.append(wav[i['start']: i['end']])
|
|
return torch.cat(chunks)
|
|
|
|
|
|
def drop_chunks(tss: List[dict],
|
|
wav: torch.Tensor):
|
|
chunks = []
|
|
cur_start = 0
|
|
for i in tss:
|
|
chunks.append((wav[cur_start: i['start']]))
|
|
cur_start = i['end']
|
|
return torch.cat(chunks)
|