Files
silero-vad/examples/java-wav-file-example/src/main/java/org/example/SileroVadOnnxModel.java

235 lines
7.4 KiB
Java

package org.example;
import ai.onnxruntime.OnnxTensor;
import ai.onnxruntime.OrtEnvironment;
import ai.onnxruntime.OrtException;
import ai.onnxruntime.OrtSession;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class SileroVadOnnxModel {
// Define private variable OrtSession
private final OrtSession session;
private float[][][] state;
private float[][] context;
// Define the last sample rate
private int lastSr = 0;
// Define the last batch size
private int lastBatchSize = 0;
// Define a list of supported sample rates
private static final List<Integer> SAMPLE_RATES = Arrays.asList(8000, 16000);
// Constructor
public SileroVadOnnxModel(String modelPath) throws OrtException {
// Get the ONNX runtime environment
OrtEnvironment env = OrtEnvironment.getEnvironment();
// Create an ONNX session options object
OrtSession.SessionOptions opts = new OrtSession.SessionOptions();
// Set the InterOp thread count to 1, InterOp threads are used for parallel processing of different computation graph operations
opts.setInterOpNumThreads(1);
// Set the IntraOp thread count to 1, IntraOp threads are used for parallel processing within a single operation
opts.setIntraOpNumThreads(1);
// Add a CPU device, setting to false disables CPU execution optimization
opts.addCPU(true);
// Create an ONNX session using the environment, model path, and options
session = env.createSession(modelPath, opts);
// Reset states
resetStates();
}
/**
* Reset states
*/
void resetStates() {
state = new float[2][1][128];
context = new float[0][];
lastSr = 0;
lastBatchSize = 0;
}
public void close() throws OrtException {
session.close();
}
/**
* Define inner class ValidationResult
*/
public static class ValidationResult {
public final float[][] x;
public final int sr;
// Constructor
public ValidationResult(float[][] x, int sr) {
this.x = x;
this.sr = sr;
}
}
/**
* Function to validate input data
*/
private ValidationResult validateInput(float[][] x, int sr) {
// Process the input data with dimension 1
if (x.length == 1) {
x = new float[][]{x[0]};
}
// Throw an exception when the input data dimension is greater than 2
if (x.length > 2) {
throw new IllegalArgumentException("Incorrect audio data dimension: " + x[0].length);
}
// Process the input data when the sample rate is not equal to 16000 and is a multiple of 16000
if (sr != 16000 && (sr % 16000 == 0)) {
int step = sr / 16000;
float[][] reducedX = new float[x.length][];
for (int i = 0; i < x.length; i++) {
float[] current = x[i];
float[] newArr = new float[(current.length + step - 1) / step];
for (int j = 0, index = 0; j < current.length; j += step, index++) {
newArr[index] = current[j];
}
reducedX[i] = newArr;
}
x = reducedX;
sr = 16000;
}
// If the sample rate is not in the list of supported sample rates, throw an exception
if (!SAMPLE_RATES.contains(sr)) {
throw new IllegalArgumentException("Only supports sample rates " + SAMPLE_RATES + " (or multiples of 16000)");
}
// If the input audio block is too short, throw an exception
if (((float) sr) / x[0].length > 31.25) {
throw new IllegalArgumentException("Input audio is too short");
}
// Return the validated result
return new ValidationResult(x, sr);
}
private static float[][] concatenate(float[][] a, float[][] b) {
if (a.length != b.length) {
throw new IllegalArgumentException("The number of rows in both arrays must be the same.");
}
int rows = a.length;
int colsA = a[0].length;
int colsB = b[0].length;
float[][] result = new float[rows][colsA + colsB];
for (int i = 0; i < rows; i++) {
System.arraycopy(a[i], 0, result[i], 0, colsA);
System.arraycopy(b[i], 0, result[i], colsA, colsB);
}
return result;
}
private static float[][] getLastColumns(float[][] array, int contextSize) {
int rows = array.length;
int cols = array[0].length;
if (contextSize > cols) {
throw new IllegalArgumentException("contextSize cannot be greater than the number of columns in the array.");
}
float[][] result = new float[rows][contextSize];
for (int i = 0; i < rows; i++) {
System.arraycopy(array[i], cols - contextSize, result[i], 0, contextSize);
}
return result;
}
/**
* Method to call the ONNX model
*/
public float[] call(float[][] x, int sr) throws OrtException {
ValidationResult result = validateInput(x, sr);
x = result.x;
sr = result.sr;
int numberSamples = 256;
if (sr == 16000) {
numberSamples = 512;
}
if (x[0].length != numberSamples) {
throw new IllegalArgumentException("Provided number of samples is " + x[0].length + " (Supported values: 256 for 8000 sample rate, 512 for 16000)");
}
int batchSize = x.length;
int contextSize = 32;
if (sr == 16000) {
contextSize = 64;
}
if (lastBatchSize == 0) {
resetStates();
}
if (lastSr != 0 && lastSr != sr) {
resetStates();
}
if (lastBatchSize != 0 && lastBatchSize != batchSize) {
resetStates();
}
if (context.length == 0) {
context = new float[batchSize][contextSize];
}
x = concatenate(context, x);
OrtEnvironment env = OrtEnvironment.getEnvironment();
OnnxTensor inputTensor = null;
OnnxTensor stateTensor = null;
OnnxTensor srTensor = null;
OrtSession.Result ortOutputs = null;
try {
// Create input tensors
inputTensor = OnnxTensor.createTensor(env, x);
stateTensor = OnnxTensor.createTensor(env, state);
srTensor = OnnxTensor.createTensor(env, new long[]{sr});
Map<String, OnnxTensor> inputs = new HashMap<>();
inputs.put("input", inputTensor);
inputs.put("sr", srTensor);
inputs.put("state", stateTensor);
// Call the ONNX model for calculation
ortOutputs = session.run(inputs);
// Get the output results
float[][] output = (float[][]) ortOutputs.get(0).getValue();
state = (float[][][]) ortOutputs.get(1).getValue();
context = getLastColumns(x, contextSize);
lastSr = sr;
lastBatchSize = batchSize;
return output[0];
} finally {
if (inputTensor != null) {
inputTensor.close();
}
if (stateTensor != null) {
stateTensor.close();
}
if (srTensor != null) {
srTensor.close();
}
if (ortOutputs != null) {
ortOutputs.close();
}
}
}
}