mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-04 09:29:22 +08:00
225 lines
7.1 KiB
Java
225 lines
7.1 KiB
Java
package org.example;
|
|
|
|
import ai.onnxruntime.OnnxTensor;
|
|
import ai.onnxruntime.OrtEnvironment;
|
|
import ai.onnxruntime.OrtException;
|
|
import ai.onnxruntime.OrtSession;
|
|
import java.util.Arrays;
|
|
import java.util.HashMap;
|
|
import java.util.List;
|
|
import java.util.Map;
|
|
|
|
/**
|
|
* Silero VAD ONNX Model Wrapper
|
|
*
|
|
* @author VvvvvGH
|
|
*/
|
|
public class SlieroVadOnnxModel {
|
|
// ONNX runtime session
|
|
private final OrtSession session;
|
|
// Model state - dimensions: [2, batch_size, 128]
|
|
private float[][][] state;
|
|
// Context - stores the tail of the previous audio chunk
|
|
private float[][] context;
|
|
// Last sample rate
|
|
private int lastSr = 0;
|
|
// Last batch size
|
|
private int lastBatchSize = 0;
|
|
// Supported sample rates
|
|
private static final List<Integer> SAMPLE_RATES = Arrays.asList(8000, 16000);
|
|
|
|
// Constructor
|
|
public SlieroVadOnnxModel(String modelPath) throws OrtException {
|
|
// Get the ONNX runtime environment
|
|
OrtEnvironment env = OrtEnvironment.getEnvironment();
|
|
// Create ONNX session options
|
|
OrtSession.SessionOptions opts = new OrtSession.SessionOptions();
|
|
// Set InterOp thread count to 1 (for parallel processing of different graph operations)
|
|
opts.setInterOpNumThreads(1);
|
|
// Set IntraOp thread count to 1 (for parallel processing within a single operation)
|
|
opts.setIntraOpNumThreads(1);
|
|
// Enable CPU execution optimization
|
|
opts.addCPU(true);
|
|
// Create ONNX session with the environment, model path, and options
|
|
session = env.createSession(modelPath, opts);
|
|
// Reset states
|
|
resetStates();
|
|
}
|
|
|
|
/**
|
|
* Reset states with default batch size
|
|
*/
|
|
void resetStates() {
|
|
resetStates(1);
|
|
}
|
|
|
|
/**
|
|
* Reset states with specific batch size
|
|
*
|
|
* @param batchSize Batch size for state initialization
|
|
*/
|
|
void resetStates(int batchSize) {
|
|
state = new float[2][batchSize][128];
|
|
context = new float[0][]; // Empty context
|
|
lastSr = 0;
|
|
lastBatchSize = 0;
|
|
}
|
|
|
|
public void close() throws OrtException {
|
|
session.close();
|
|
}
|
|
|
|
/**
|
|
* Inner class for validation result
|
|
*/
|
|
public static class ValidationResult {
|
|
public final float[][] x;
|
|
public final int sr;
|
|
|
|
public ValidationResult(float[][] x, int sr) {
|
|
this.x = x;
|
|
this.sr = sr;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Validate input data
|
|
*
|
|
* @param x Audio data array
|
|
* @param sr Sample rate
|
|
* @return Validated input data and sample rate
|
|
*/
|
|
private ValidationResult validateInput(float[][] x, int sr) {
|
|
// Ensure input is at least 2D
|
|
if (x.length == 1) {
|
|
x = new float[][]{x[0]};
|
|
}
|
|
// Check if input dimension is valid
|
|
if (x.length > 2) {
|
|
throw new IllegalArgumentException("Incorrect audio data dimension: " + x[0].length);
|
|
}
|
|
|
|
// Downsample if sample rate is a multiple of 16000
|
|
if (sr != 16000 && (sr % 16000 == 0)) {
|
|
int step = sr / 16000;
|
|
float[][] reducedX = new float[x.length][];
|
|
|
|
for (int i = 0; i < x.length; i++) {
|
|
float[] current = x[i];
|
|
float[] newArr = new float[(current.length + step - 1) / step];
|
|
|
|
for (int j = 0, index = 0; j < current.length; j += step, index++) {
|
|
newArr[index] = current[j];
|
|
}
|
|
|
|
reducedX[i] = newArr;
|
|
}
|
|
|
|
x = reducedX;
|
|
sr = 16000;
|
|
}
|
|
|
|
// Validate sample rate
|
|
if (!SAMPLE_RATES.contains(sr)) {
|
|
throw new IllegalArgumentException("Only supports sample rates " + SAMPLE_RATES + " (or multiples of 16000)");
|
|
}
|
|
|
|
// Check if audio chunk is too short
|
|
if (((float) sr) / x[0].length > 31.25) {
|
|
throw new IllegalArgumentException("Input audio is too short");
|
|
}
|
|
|
|
return new ValidationResult(x, sr);
|
|
}
|
|
|
|
/**
|
|
* Call the ONNX model for inference
|
|
*
|
|
* @param x Audio data array
|
|
* @param sr Sample rate
|
|
* @return Speech probability output
|
|
* @throws OrtException If ONNX runtime error occurs
|
|
*/
|
|
public float[] call(float[][] x, int sr) throws OrtException {
|
|
ValidationResult result = validateInput(x, sr);
|
|
x = result.x;
|
|
sr = result.sr;
|
|
|
|
int batchSize = x.length;
|
|
int numSamples = sr == 16000 ? 512 : 256;
|
|
int contextSize = sr == 16000 ? 64 : 32;
|
|
|
|
// Reset states only when sample rate or batch size changes
|
|
if (lastSr != 0 && lastSr != sr) {
|
|
resetStates(batchSize);
|
|
} else if (lastBatchSize != 0 && lastBatchSize != batchSize) {
|
|
resetStates(batchSize);
|
|
} else if (lastBatchSize == 0) {
|
|
// First call - state is already initialized, just set batch size
|
|
lastBatchSize = batchSize;
|
|
}
|
|
|
|
// Initialize context if needed
|
|
if (context.length == 0) {
|
|
context = new float[batchSize][contextSize];
|
|
}
|
|
|
|
// Concatenate context and input
|
|
float[][] xWithContext = new float[batchSize][contextSize + numSamples];
|
|
for (int i = 0; i < batchSize; i++) {
|
|
// Copy context
|
|
System.arraycopy(context[i], 0, xWithContext[i], 0, contextSize);
|
|
// Copy input
|
|
System.arraycopy(x[i], 0, xWithContext[i], contextSize, numSamples);
|
|
}
|
|
|
|
OrtEnvironment env = OrtEnvironment.getEnvironment();
|
|
|
|
OnnxTensor inputTensor = null;
|
|
OnnxTensor stateTensor = null;
|
|
OnnxTensor srTensor = null;
|
|
OrtSession.Result ortOutputs = null;
|
|
|
|
try {
|
|
// Create input tensors
|
|
inputTensor = OnnxTensor.createTensor(env, xWithContext);
|
|
stateTensor = OnnxTensor.createTensor(env, state);
|
|
srTensor = OnnxTensor.createTensor(env, new long[]{sr});
|
|
|
|
Map<String, OnnxTensor> inputs = new HashMap<>();
|
|
inputs.put("input", inputTensor);
|
|
inputs.put("sr", srTensor);
|
|
inputs.put("state", stateTensor);
|
|
|
|
// Run ONNX model inference
|
|
ortOutputs = session.run(inputs);
|
|
// Get output results
|
|
float[][] output = (float[][]) ortOutputs.get(0).getValue();
|
|
state = (float[][][]) ortOutputs.get(1).getValue();
|
|
|
|
// Update context - save the last contextSize samples from input
|
|
for (int i = 0; i < batchSize; i++) {
|
|
System.arraycopy(xWithContext[i], xWithContext[i].length - contextSize,
|
|
context[i], 0, contextSize);
|
|
}
|
|
|
|
lastSr = sr;
|
|
lastBatchSize = batchSize;
|
|
return output[0];
|
|
} finally {
|
|
if (inputTensor != null) {
|
|
inputTensor.close();
|
|
}
|
|
if (stateTensor != null) {
|
|
stateTensor.close();
|
|
}
|
|
if (srTensor != null) {
|
|
srTensor.close();
|
|
}
|
|
if (ortOutputs != null) {
|
|
ortOutputs.close();
|
|
}
|
|
}
|
|
}
|
|
}
|