Files
silero-vad/silero-vad.ipynb
2024-07-09 10:20:50 +00:00

229 lines
5.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"heading_collapsed": true,
"id": "62A6F_072Fwq"
},
"source": [
"## Install Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true,
"id": "5w5AkskZ2Fwr"
},
"outputs": [],
"source": [
"#@title Install and Import Dependencies\n",
"\n",
"# this assumes that you have a relevant version of PyTorch installed\n",
"!pip install -q torchaudio\n",
"\n",
"SAMPLING_RATE = 16000\n",
"\n",
"import torch\n",
"torch.set_num_threads(1)\n",
"\n",
"from IPython.display import Audio\n",
"from pprint import pprint\n",
"# download example\n",
"torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en.wav', 'en_example.wav')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pSifus5IilRp"
},
"outputs": [],
"source": [
"USE_PIP = True # download model using pip package or torch.hub\n",
"USE_ONNX = False # change this to True if you want to test onnx model\n",
"if USE_ONNX:\n",
" !pip install -q onnxruntime\n",
"if USE_PIP:\n",
" !pip install -q silero-vad\n",
" from silero_vad import (load_silero_vad,\n",
" read_audio,\n",
" get_speech_timestamps,\n",
" save_audio,\n",
" VADIterator,\n",
" collect_chunks)\n",
" model = load_silero_vad(onnx=USE_ONNX)\n",
"else:\n",
" model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
" model='silero_vad',\n",
" force_reload=True,\n",
" onnx=USE_ONNX)\n",
"\n",
" (get_speech_timestamps,\n",
" save_audio,\n",
" read_audio,\n",
" VADIterator,\n",
" collect_chunks) = utils"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fXbbaUO3jsrw"
},
"source": [
"## Speech timestapms from full audio"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "aI_eydBPjsrx"
},
"outputs": [],
"source": [
"wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
"# get speech timestamps from full audio file\n",
"speech_timestamps = get_speech_timestamps(wav, model, sampling_rate=SAMPLING_RATE)\n",
"pprint(speech_timestamps)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "OuEobLchjsry"
},
"outputs": [],
"source": [
"# merge all speech chunks to one audio\n",
"save_audio('only_speech.wav',\n",
" collect_chunks(speech_timestamps, wav), sampling_rate=SAMPLING_RATE)\n",
"Audio('only_speech.wav')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zeO1xCqxUC6w"
},
"source": [
"## Entire audio inference"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "LjZBcsaTT7Mk"
},
"outputs": [],
"source": [
"wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
"# audio is being splitted into 31.25 ms long pieces\n",
"# so output length equals ceil(input_length * 31.25 / SAMPLING_RATE)\n",
"predicts = model.audio_forward(wav, sr=SAMPLING_RATE)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iDKQbVr8jsry"
},
"source": [
"## Stream imitation example"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "q-lql_2Wjsry"
},
"outputs": [],
"source": [
"## using VADIterator class\n",
"\n",
"vad_iterator = VADIterator(model, sampling_rate=SAMPLING_RATE)\n",
"wav = read_audio(f'en_example.wav', sampling_rate=SAMPLING_RATE)\n",
"\n",
"window_size_samples = 512 if SAMPLING_RATE == 16000 else 256\n",
"for i in range(0, len(wav), window_size_samples):\n",
" chunk = wav[i: i+ window_size_samples]\n",
" if len(chunk) < window_size_samples:\n",
" break\n",
" speech_dict = vad_iterator(chunk, return_seconds=True)\n",
" if speech_dict:\n",
" print(speech_dict, end=' ')\n",
"vad_iterator.reset_states() # reset model states after each audio"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BX3UgwwB2Fwv"
},
"outputs": [],
"source": [
"## just probabilities\n",
"\n",
"wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
"speech_probs = []\n",
"window_size_samples = 512 if SAMPLING_RATE == 16000 else 256\n",
"for i in range(0, len(wav), window_size_samples):\n",
" chunk = wav[i: i+ window_size_samples]\n",
" if len(chunk) < window_size_samples:\n",
" break\n",
" speech_prob = model(chunk, SAMPLING_RATE).item()\n",
" speech_probs.append(speech_prob)\n",
"vad_iterator.reset_states() # reset model states after each audio\n",
"\n",
"print(speech_probs[:10]) # first 10 chunks predicts"
]
}
],
"metadata": {
"colab": {
"name": "silero-vad.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 0
}