Files
silero-vad/silero-vad.ipynb
adamnsandle 6572cad0fa fx
2020-12-15 14:05:12 +00:00

440 lines
10 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "sVNOuHQQjsrp"
},
"source": [
"# PyTorch Example"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9ZTzCtc5kYVg"
},
"source": [
"## Install Dependencies"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2020-12-15T14:00:15.701867Z",
"start_time": "2020-12-15T14:00:09.512876Z"
},
"cellView": "form",
"id": "rllMjjsekbjt"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Downloading: \"https://github.com/snakers4/silero-vad/archive/master.zip\" to /home/keras/.cache/torch/hub/master.zip\n",
"/opt/conda/lib/python3.8/site-packages/torchaudio/backend/utils.py:53: UserWarning: \"sox\" backend is being deprecated. The default backend will be changed to \"sox_io\" backend in 0.8.0 and \"sox\" backend will be removed in 0.9.0. Please migrate to \"sox_io\" backend. Please refer to https://github.com/pytorch/audio/issues/903 for the detail.\n",
" warnings.warn(\n",
"/opt/conda/lib/python3.8/site-packages/torchaudio/backend/utils.py:63: UserWarning: The interface of \"soundfile\" backend is planned to change in 0.8.0 to match that of \"sox_io\" backend and the current interface will be removed in 0.9.0. To use the new interface, do `torchaudio.USE_SOUNDFILE_LEGACY_INTERFACE = False` before setting the backend to \"soundfile\". Please refer to https://github.com/pytorch/audio/issues/903 for the detail.\n",
" warnings.warn(\n"
]
}
],
"source": [
"#@title Install and Import Dependencies\n",
"\n",
"# this assumes that you have a relevant version of PyTorch installed\n",
"#!pip install -q torchaudio soundfile\n",
"\n",
"import glob\n",
"import torch\n",
"torch.set_num_threads(1)\n",
"\n",
"from IPython.display import Audio\n",
"\n",
"\n",
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
" model='silero_vad',\n",
" force_reload=True)\n",
"\n",
"(get_speech_ts,\n",
" save_audio,\n",
" read_audio,\n",
" state_generator,\n",
" single_audio_stream,\n",
" collect_speeches) = utils"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2020-12-15T14:03:38.006309Z",
"start_time": "2020-12-15T14:03:38.002613Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"'/home/keras/.cache/torch/hub'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"torch.hub.get_dir()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fXbbaUO3jsrw"
},
"source": [
"## Full audio"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2020-12-15T13:09:56.879818Z",
"start_time": "2020-12-15T13:09:56.864765Z"
},
"id": "aI_eydBPjsrx"
},
"outputs": [],
"source": [
"wav = read_audio('files/en.wav')\n",
"# get speech timestamps from full audio file\n",
"speech_timestamps = get_speech_ts(wav, model,\n",
" num_steps=4)\n",
"print(speech_timestamps)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2020-12-15T13:09:58.941063Z",
"start_time": "2020-12-15T13:09:58.887006Z"
},
"id": "OuEobLchjsry"
},
"outputs": [],
"source": [
"# merge all speech chunks to one audio\n",
"save_audio('only_speech.wav',\n",
" collect_speeches(speech_timestamps, wav), 16000) \n",
"Audio('only_speech.wav')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iDKQbVr8jsry"
},
"source": [
"## Single Audio Stream"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2020-12-15T13:09:59.199321Z",
"start_time": "2020-12-15T13:09:59.196823Z"
},
"id": "q-lql_2Wjsry"
},
"outputs": [],
"source": [
"wav = 'files/en.wav'\n",
"\n",
"for batch in single_audio_stream(model, wav):\n",
" if batch:\n",
" print(batch)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KBDVybJCjsrz"
},
"source": [
"## Multiple Audio Streams"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2020-12-15T13:10:03.590358Z",
"start_time": "2020-12-15T13:10:03.587071Z"
},
"id": "BK4tGfWgjsrz"
},
"outputs": [],
"source": [
"audios_for_stream = glob.glob('files/*.wav')\n",
"len(audios_for_stream) # total 4 audios"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2020-12-15T13:10:15.762491Z",
"start_time": "2020-12-15T13:10:03.591388Z"
},
"id": "v1l8sam1jsrz"
},
"outputs": [],
"source": [
"for batch in state_generator(model, audios_for_stream, audios_in_stream=2): # 2 audio stream\n",
" if batch:\n",
" print(batch)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "57avIBd6jsrz"
},
"source": [
"# ONNX Example"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bL4kn4KJrlyL"
},
"source": [
"## Install Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Q4QIfSpprnkI"
},
"outputs": [],
"source": [
"#@title Install and Import Dependencies\n",
"\n",
"# this assumes that you have a relevant version of PyTorch installed\n",
"!pip install -q torchaudio soundfile onnxruntime\n",
"\n",
"import glob\n",
"import onnxruntime\n",
"\n",
"from IPython.display import Audio\n",
"\n",
"_, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
" model='silero_vad',\n",
" force_reload=True)\n",
"\n",
"(get_speech_ts,\n",
" save_audio,\n",
" read_audio,\n",
" state_generator,\n",
" single_audio_stream,\n",
" collect_speeches) = utils\n",
"\n",
" def init_onnx_model(model_path: str):\n",
" return onnxruntime.InferenceSession(model_path)\n",
"\n",
"def validate_onnx(model, inputs):\n",
" with torch.no_grad():\n",
" ort_inputs = {'input': inputs.cpu().numpy()}\n",
" outs = model.run(None, ort_inputs)\n",
" outs = [torch.Tensor(x) for x in outs]\n",
" return outs"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5JHErdB7jsr0"
},
"source": [
"## Full audio"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2020-12-15T13:09:06.643812Z",
"start_time": "2020-12-15T13:09:06.473386Z"
},
"id": "krnGoA6Kjsr0"
},
"outputs": [],
"source": [
"model = init_onnx_model('files/model.onnx')\n",
"wav = read_audio('files/en.wav')\n",
"\n",
"# get speech timestamps from full audio file\n",
"speech_timestamps = get_speech_ts(wav, model, num_steps=4, run_function=validate_onnx) \n",
"print(speech_timestamps)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2020-12-15T13:09:08.862421Z",
"start_time": "2020-12-15T13:09:08.820014Z"
},
"id": "B176Lzfnjsr1"
},
"outputs": [],
"source": [
"# merge all speech chunks to one audio\n",
"save_audio('only_speech.wav', collect_speeches(speech_timestamps, wav), 16000)\n",
"Audio('only_speech.wav')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Rio9W50gjsr1"
},
"source": [
"## Single audio stream"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2020-12-15T13:09:09.606031Z",
"start_time": "2020-12-15T13:09:09.504239Z"
},
"id": "IPkl8Yy1jsr1"
},
"outputs": [],
"source": [
"model = init_onnx_model('files/model.onnx')\n",
"wav = 'files/en.wav'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2020-12-15T13:09:11.453171Z",
"start_time": "2020-12-15T13:09:09.633435Z"
},
"id": "NC6Jim0hjsr1"
},
"outputs": [],
"source": [
"for batch in single_audio_stream(model, wav, run_function=validate_onnx):\n",
" if batch:\n",
" print(batch)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WNZ42u0ajsr1"
},
"source": [
"## Multiple audio stream"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2020-12-15T13:09:11.540423Z",
"start_time": "2020-12-15T13:09:11.455706Z"
},
"id": "XjhGQGppjsr1"
},
"outputs": [],
"source": [
"model = init_onnx_model('files/model.onnx')\n",
"audios_for_stream = glob.glob('files/*.wav')\n",
"print(len(audios_for_stream)) # total 4 audios"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2020-12-15T13:09:19.565434Z",
"start_time": "2020-12-15T13:09:11.552097Z"
},
"id": "QI7-arlqjsr2"
},
"outputs": [],
"source": [
"for batch in state_generator(model, audios_for_stream, audios_in_stream=2, run_function=validate_onnx): # 2 audio stream\n",
" if batch:\n",
" print(batch)"
]
}
],
"metadata": {
"colab": {
"name": "silero-vad.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}