mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-04 17:39:22 +08:00
56 lines
2.2 KiB
Python
56 lines
2.2 KiB
Python
from utils_vad import *
|
|
import sys
|
|
import os
|
|
from pathlib import Path
|
|
sys.path.append('/home/keras/notebook/nvme_raid/adamnsandle/silero_mono/pipelines/align/bin/')
|
|
from align_utils import load_audio_norm
|
|
import torch
|
|
import pandas as pd
|
|
import numpy as np
|
|
sys.path.append('/home/keras/notebook/nvme_raid/adamnsandle/silero_mono/utils/')
|
|
from open_stt import soundfile_opus as sf
|
|
|
|
def split_save_audio_chunks(audio_path, model_path, save_path=None, device='cpu', absolute=True, max_duration=10, adaptive=False, **kwargs):
|
|
|
|
if not save_path:
|
|
save_path = str(Path(audio_path).with_name('after_vad'))
|
|
print(f'No save path specified! Using {save_path} to save audio chunks!')
|
|
|
|
SAMPLE_RATE = 16000
|
|
if type(model_path) == str:
|
|
#print('Loading model...')
|
|
model = init_jit_model(model_path, device)
|
|
else:
|
|
#print('Using loaded model')
|
|
model = model_path
|
|
save_name = Path(audio_path).stem
|
|
audio, sr = load_audio_norm(audio_path)
|
|
wav = torch.tensor(audio)
|
|
if adaptive:
|
|
speech_timestamps = get_speech_ts_adaptive(wav, model, device=device, **kwargs)
|
|
else:
|
|
speech_timestamps = get_speech_ts(wav, model, device=device, **kwargs)
|
|
|
|
full_save_path = Path(save_path, save_name)
|
|
if not os.path.exists(full_save_path):
|
|
os.makedirs(full_save_path, exist_ok=True)
|
|
|
|
chunks = []
|
|
if not speech_timestamps:
|
|
return pd.DataFrame()
|
|
for ts in speech_timestamps:
|
|
start_ts = int(ts['start'])
|
|
end_ts = int(ts['end'])
|
|
|
|
for i in range(start_ts, end_ts, max_duration * SAMPLE_RATE):
|
|
new_start = i
|
|
new_end = min(end_ts, i + max_duration * SAMPLE_RATE)
|
|
duration = round((new_end - new_start) / SAMPLE_RATE, 2)
|
|
chunk_path = Path(full_save_path, f'{save_name}_{new_start}-{new_end}.opus')
|
|
chunk_path = chunk_path.absolute() if absolute else chunk_path
|
|
sf.write(str(chunk_path), audio[new_start: new_end], 16000, format='OGG', subtype='OPUS')
|
|
chunks.append({'audio_path': chunk_path,
|
|
'text': '',
|
|
'duration': duration,
|
|
'domain': ''})
|
|
return pd.DataFrame(chunks) |