mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-04 17:39:22 +08:00
479 lines
15 KiB
C++
479 lines
15 KiB
C++
#include <iostream>
|
|
#include <vector>
|
|
#include <sstream>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <chrono>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <stdexcept>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include "onnxruntime_cxx_api.h"
|
|
#include "wav.h"
|
|
#include <cstdio>
|
|
#include <cstdarg>
|
|
#if __cplusplus < 201703L
|
|
#include <memory>
|
|
#endif
|
|
|
|
//#define __DEBUG_SPEECH_PROB___
|
|
|
|
class timestamp_t
|
|
{
|
|
public:
|
|
int start;
|
|
int end;
|
|
|
|
// default + parameterized constructor
|
|
timestamp_t(int start = -1, int end = -1)
|
|
: start(start), end(end)
|
|
{
|
|
};
|
|
|
|
// assignment operator modifies object, therefore non-const
|
|
timestamp_t& operator=(const timestamp_t& a)
|
|
{
|
|
start = a.start;
|
|
end = a.end;
|
|
return *this;
|
|
};
|
|
|
|
// equality comparison. doesn't modify object. therefore const.
|
|
bool operator==(const timestamp_t& a) const
|
|
{
|
|
return (start == a.start && end == a.end);
|
|
};
|
|
std::string c_str()
|
|
{
|
|
//return std::format("timestamp {:08d}, {:08d}", start, end);
|
|
return format("{start:%08d,end:%08d}", start, end);
|
|
};
|
|
private:
|
|
|
|
std::string format(const char* fmt, ...)
|
|
{
|
|
char buf[256];
|
|
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
const auto r = std::vsnprintf(buf, sizeof buf, fmt, args);
|
|
va_end(args);
|
|
|
|
if (r < 0)
|
|
// conversion failed
|
|
return {};
|
|
|
|
const size_t len = r;
|
|
if (len < sizeof buf)
|
|
// we fit in the buffer
|
|
return { buf, len };
|
|
|
|
#if __cplusplus >= 201703L
|
|
// C++17: Create a string and write to its underlying array
|
|
std::string s(len, '\0');
|
|
va_start(args, fmt);
|
|
std::vsnprintf(s.data(), len + 1, fmt, args);
|
|
va_end(args);
|
|
|
|
return s;
|
|
#else
|
|
// C++11 or C++14: We need to allocate scratch memory
|
|
auto vbuf = std::unique_ptr<char[]>(new char[len + 1]);
|
|
va_start(args, fmt);
|
|
std::vsnprintf(vbuf.get(), len + 1, fmt, args);
|
|
va_end(args);
|
|
|
|
return { vbuf.get(), len };
|
|
#endif
|
|
};
|
|
};
|
|
|
|
|
|
class VadIterator
|
|
{
|
|
private:
|
|
// OnnxRuntime resources
|
|
Ort::Env env;
|
|
Ort::SessionOptions session_options;
|
|
std::shared_ptr<Ort::Session> session = nullptr;
|
|
Ort::AllocatorWithDefaultOptions allocator;
|
|
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeCPU);
|
|
|
|
private:
|
|
void init_engine_threads(int inter_threads, int intra_threads)
|
|
{
|
|
// The method should be called in each thread/proc in multi-thread/proc work
|
|
session_options.SetIntraOpNumThreads(intra_threads);
|
|
session_options.SetInterOpNumThreads(inter_threads);
|
|
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
|
|
};
|
|
|
|
void init_onnx_model(const std::wstring& model_path)
|
|
{
|
|
// Init threads = 1 for
|
|
init_engine_threads(1, 1);
|
|
// Load model
|
|
session = std::make_shared<Ort::Session>(env, model_path.c_str(), session_options);
|
|
};
|
|
|
|
void reset_states()
|
|
{
|
|
// Call reset before each audio start
|
|
std::memset(_state.data(), 0.0f, _state.size() * sizeof(float));
|
|
triggered = false;
|
|
temp_end = 0;
|
|
current_sample = 0;
|
|
|
|
prev_end = next_start = 0;
|
|
|
|
speeches.clear();
|
|
current_speech = timestamp_t();
|
|
};
|
|
|
|
void predict(const std::vector<float> &data)
|
|
{
|
|
// Infer
|
|
// Create ort tensors
|
|
input.assign(data.begin(), data.end());
|
|
Ort::Value input_ort = Ort::Value::CreateTensor<float>(
|
|
memory_info, input.data(), input.size(), input_node_dims, 2);
|
|
Ort::Value state_ort = Ort::Value::CreateTensor<float>(
|
|
memory_info, _state.data(), _state.size(), state_node_dims, 3);
|
|
Ort::Value sr_ort = Ort::Value::CreateTensor<int64_t>(
|
|
memory_info, sr.data(), sr.size(), sr_node_dims, 1);
|
|
|
|
// Clear and add inputs
|
|
ort_inputs.clear();
|
|
ort_inputs.emplace_back(std::move(input_ort));
|
|
ort_inputs.emplace_back(std::move(state_ort));
|
|
ort_inputs.emplace_back(std::move(sr_ort));
|
|
|
|
// Infer
|
|
ort_outputs = session->Run(
|
|
Ort::RunOptions{nullptr},
|
|
input_node_names.data(), ort_inputs.data(), ort_inputs.size(),
|
|
output_node_names.data(), output_node_names.size());
|
|
|
|
// Output probability & update h,c recursively
|
|
float speech_prob = ort_outputs[0].GetTensorMutableData<float>()[0];
|
|
float *stateN = ort_outputs[1].GetTensorMutableData<float>();
|
|
std::memcpy(_state.data(), stateN, size_state * sizeof(float));
|
|
|
|
// Push forward sample index
|
|
current_sample += window_size_samples;
|
|
|
|
// Reset temp_end when > threshold
|
|
if ((speech_prob >= threshold))
|
|
{
|
|
#ifdef __DEBUG_SPEECH_PROB___
|
|
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
|
|
printf("{ start: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample- window_size_samples);
|
|
#endif //__DEBUG_SPEECH_PROB___
|
|
if (temp_end != 0)
|
|
{
|
|
temp_end = 0;
|
|
if (next_start < prev_end)
|
|
next_start = current_sample - window_size_samples;
|
|
}
|
|
if (triggered == false)
|
|
{
|
|
triggered = true;
|
|
|
|
current_speech.start = current_sample - window_size_samples;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (
|
|
(triggered == true)
|
|
&& ((current_sample - current_speech.start) > max_speech_samples)
|
|
) {
|
|
if (prev_end > 0) {
|
|
current_speech.end = prev_end;
|
|
speeches.push_back(current_speech);
|
|
current_speech = timestamp_t();
|
|
|
|
// previously reached silence(< neg_thres) and is still not speech(< thres)
|
|
if (next_start < prev_end)
|
|
triggered = false;
|
|
else{
|
|
current_speech.start = next_start;
|
|
}
|
|
prev_end = 0;
|
|
next_start = 0;
|
|
temp_end = 0;
|
|
|
|
}
|
|
else{
|
|
current_speech.end = current_sample;
|
|
speeches.push_back(current_speech);
|
|
current_speech = timestamp_t();
|
|
prev_end = 0;
|
|
next_start = 0;
|
|
temp_end = 0;
|
|
triggered = false;
|
|
}
|
|
return;
|
|
|
|
}
|
|
if ((speech_prob >= (threshold - 0.15)) && (speech_prob < threshold))
|
|
{
|
|
if (triggered) {
|
|
#ifdef __DEBUG_SPEECH_PROB___
|
|
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
|
|
printf("{ speeking: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
|
|
#endif //__DEBUG_SPEECH_PROB___
|
|
}
|
|
else {
|
|
#ifdef __DEBUG_SPEECH_PROB___
|
|
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
|
|
printf("{ silence: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
|
|
#endif //__DEBUG_SPEECH_PROB___
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
// 4) End
|
|
if ((speech_prob < (threshold - 0.15)))
|
|
{
|
|
#ifdef __DEBUG_SPEECH_PROB___
|
|
float speech = current_sample - window_size_samples - speech_pad_samples; // minus window_size_samples to get precise start time point.
|
|
printf("{ end: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
|
|
#endif //__DEBUG_SPEECH_PROB___
|
|
if (triggered == true)
|
|
{
|
|
if (temp_end == 0)
|
|
{
|
|
temp_end = current_sample;
|
|
}
|
|
if (current_sample - temp_end > min_silence_samples_at_max_speech)
|
|
prev_end = temp_end;
|
|
// a. silence < min_slience_samples, continue speaking
|
|
if ((current_sample - temp_end) < min_silence_samples)
|
|
{
|
|
|
|
}
|
|
// b. silence >= min_slience_samples, end speaking
|
|
else
|
|
{
|
|
current_speech.end = temp_end;
|
|
if (current_speech.end - current_speech.start > min_speech_samples)
|
|
{
|
|
speeches.push_back(current_speech);
|
|
current_speech = timestamp_t();
|
|
prev_end = 0;
|
|
next_start = 0;
|
|
temp_end = 0;
|
|
triggered = false;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// may first windows see end state.
|
|
}
|
|
return;
|
|
}
|
|
};
|
|
public:
|
|
void process(const std::vector<float>& input_wav)
|
|
{
|
|
reset_states();
|
|
|
|
audio_length_samples = input_wav.size();
|
|
|
|
for (int j = 0; j < audio_length_samples; j += window_size_samples)
|
|
{
|
|
if (j + window_size_samples > audio_length_samples)
|
|
break;
|
|
std::vector<float> r{ &input_wav[0] + j, &input_wav[0] + j + window_size_samples };
|
|
predict(r);
|
|
}
|
|
|
|
if (current_speech.start >= 0) {
|
|
current_speech.end = audio_length_samples;
|
|
speeches.push_back(current_speech);
|
|
current_speech = timestamp_t();
|
|
prev_end = 0;
|
|
next_start = 0;
|
|
temp_end = 0;
|
|
triggered = false;
|
|
}
|
|
};
|
|
|
|
void process(const std::vector<float>& input_wav, std::vector<float>& output_wav)
|
|
{
|
|
process(input_wav);
|
|
collect_chunks(input_wav, output_wav);
|
|
}
|
|
|
|
void collect_chunks(const std::vector<float>& input_wav, std::vector<float>& output_wav)
|
|
{
|
|
output_wav.clear();
|
|
for (int i = 0; i < speeches.size(); i++) {
|
|
#ifdef __DEBUG_SPEECH_PROB___
|
|
std::cout << speeches[i].c_str() << std::endl;
|
|
#endif //#ifdef __DEBUG_SPEECH_PROB___
|
|
std::vector<float> slice(&input_wav[speeches[i].start], &input_wav[speeches[i].end]);
|
|
output_wav.insert(output_wav.end(),slice.begin(),slice.end());
|
|
}
|
|
};
|
|
|
|
const std::vector<timestamp_t> get_speech_timestamps() const
|
|
{
|
|
return speeches;
|
|
}
|
|
|
|
void drop_chunks(const std::vector<float>& input_wav, std::vector<float>& output_wav)
|
|
{
|
|
output_wav.clear();
|
|
int current_start = 0;
|
|
for (int i = 0; i < speeches.size(); i++) {
|
|
|
|
std::vector<float> slice(&input_wav[current_start],&input_wav[speeches[i].start]);
|
|
output_wav.insert(output_wav.end(), slice.begin(), slice.end());
|
|
current_start = speeches[i].end;
|
|
}
|
|
|
|
std::vector<float> slice(&input_wav[current_start], &input_wav[input_wav.size()]);
|
|
output_wav.insert(output_wav.end(), slice.begin(), slice.end());
|
|
};
|
|
|
|
private:
|
|
// model config
|
|
int64_t window_size_samples; // Assign when init, support 256 512 768 for 8k; 512 1024 1536 for 16k.
|
|
int sample_rate; //Assign when init support 16000 or 8000
|
|
int sr_per_ms; // Assign when init, support 8 or 16
|
|
float threshold;
|
|
int min_silence_samples; // sr_per_ms * #ms
|
|
int min_silence_samples_at_max_speech; // sr_per_ms * #98
|
|
int min_speech_samples; // sr_per_ms * #ms
|
|
float max_speech_samples;
|
|
int speech_pad_samples; // usually a
|
|
int audio_length_samples;
|
|
|
|
// model states
|
|
bool triggered = false;
|
|
unsigned int temp_end = 0;
|
|
unsigned int current_sample = 0;
|
|
// MAX 4294967295 samples / 8sample per ms / 1000 / 60 = 8947 minutes
|
|
int prev_end;
|
|
int next_start = 0;
|
|
|
|
//Output timestamp
|
|
std::vector<timestamp_t> speeches;
|
|
timestamp_t current_speech;
|
|
|
|
|
|
// Onnx model
|
|
// Inputs
|
|
std::vector<Ort::Value> ort_inputs;
|
|
|
|
std::vector<const char *> input_node_names = {"input", "state", "sr"};
|
|
std::vector<float> input;
|
|
unsigned int size_state = 2 * 1 * 128; // It's FIXED.
|
|
std::vector<float> _state;
|
|
std::vector<int64_t> sr;
|
|
|
|
int64_t input_node_dims[2] = {};
|
|
const int64_t state_node_dims[3] = {2, 1, 128};
|
|
const int64_t sr_node_dims[1] = {1};
|
|
|
|
// Outputs
|
|
std::vector<Ort::Value> ort_outputs;
|
|
std::vector<const char *> output_node_names = {"output", "stateN"};
|
|
|
|
public:
|
|
// Construction
|
|
VadIterator(const std::wstring ModelPath,
|
|
int Sample_rate = 16000, int windows_frame_size = 32,
|
|
float Threshold = 0.5, int min_silence_duration_ms = 0,
|
|
int speech_pad_ms = 32, int min_speech_duration_ms = 32,
|
|
float max_speech_duration_s = std::numeric_limits<float>::infinity())
|
|
{
|
|
init_onnx_model(ModelPath);
|
|
threshold = Threshold;
|
|
sample_rate = Sample_rate;
|
|
sr_per_ms = sample_rate / 1000;
|
|
|
|
window_size_samples = windows_frame_size * sr_per_ms;
|
|
|
|
min_speech_samples = sr_per_ms * min_speech_duration_ms;
|
|
speech_pad_samples = sr_per_ms * speech_pad_ms;
|
|
|
|
max_speech_samples = (
|
|
sample_rate * max_speech_duration_s
|
|
- window_size_samples
|
|
- 2 * speech_pad_samples
|
|
);
|
|
|
|
min_silence_samples = sr_per_ms * min_silence_duration_ms;
|
|
min_silence_samples_at_max_speech = sr_per_ms * 98;
|
|
|
|
input.resize(window_size_samples);
|
|
input_node_dims[0] = 1;
|
|
input_node_dims[1] = window_size_samples;
|
|
|
|
_state.resize(size_state);
|
|
sr.resize(1);
|
|
sr[0] = sample_rate;
|
|
};
|
|
};
|
|
|
|
int main()
|
|
{
|
|
std::vector<timestamp_t> stamps;
|
|
|
|
// Read wav
|
|
wav::WavReader wav_reader("recorder.wav"); //16000,1,32float
|
|
std::vector<float> input_wav(wav_reader.num_samples());
|
|
std::vector<float> output_wav;
|
|
|
|
for (int i = 0; i < wav_reader.num_samples(); i++)
|
|
{
|
|
input_wav[i] = static_cast<float>(*(wav_reader.data() + i));
|
|
}
|
|
|
|
|
|
|
|
// ===== Test configs =====
|
|
std::wstring path = L"silero_vad.onnx";
|
|
VadIterator vad(path);
|
|
|
|
// ==============================================
|
|
// ==== = Example 1 of full function =====
|
|
// ==============================================
|
|
vad.process(input_wav);
|
|
|
|
// 1.a get_speech_timestamps
|
|
stamps = vad.get_speech_timestamps();
|
|
for (int i = 0; i < stamps.size(); i++) {
|
|
|
|
std::cout << stamps[i].c_str() << std::endl;
|
|
}
|
|
|
|
// 1.b collect_chunks output wav
|
|
vad.collect_chunks(input_wav, output_wav);
|
|
|
|
// 1.c drop_chunks output wav
|
|
vad.drop_chunks(input_wav, output_wav);
|
|
|
|
// ==============================================
|
|
// ===== Example 2 of simple full function =====
|
|
// ==============================================
|
|
vad.process(input_wav, output_wav);
|
|
|
|
stamps = vad.get_speech_timestamps();
|
|
for (int i = 0; i < stamps.size(); i++) {
|
|
|
|
std::cout << stamps[i].c_str() << std::endl;
|
|
}
|
|
|
|
// ==============================================
|
|
// ===== Example 3 of full function =====
|
|
// ==============================================
|
|
for(int i = 0; i<2; i++)
|
|
vad.process(input_wav, output_wav);
|
|
}
|