Files
silero-vad/examples/cpp/silero-vad-onnx.cpp
2024-07-01 15:04:48 +01:00

245 lines
8.1 KiB
C++

#include <iostream>
#include <vector>
#include <sstream>
#include <cstring>
#include <chrono>
#include "onnxruntime_cxx_api.h"
#include "wav.h"
class VadIterator
{
// OnnxRuntime resources
Ort::Env env;
Ort::SessionOptions session_options;
std::shared_ptr<Ort::Session> session = nullptr;
Ort::AllocatorWithDefaultOptions allocator;
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeCPU);
public:
void init_engine_threads(int inter_threads, int intra_threads)
{
// The method should be called in each thread/proc in multi-thread/proc work
session_options.SetIntraOpNumThreads(intra_threads);
session_options.SetInterOpNumThreads(inter_threads);
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
}
void init_onnx_model(const std::string &model_path)
{
// Init threads = 1 for
init_engine_threads(1, 1);
// Load model
session = std::make_shared<Ort::Session>(env, model_path.c_str(), session_options);
}
void reset_states()
{
// Call reset before each audio start
std::memset(_state.data(), 0.0f, _state.size() * sizeof(float));
triggerd = false;
temp_end = 0;
current_sample = 0;
}
// Call it in predict func. if you prefer raw bytes input.
void bytes_to_float_tensor(const char *pcm_bytes)
{
std::memcpy(input.data(), pcm_bytes, window_size_samples * sizeof(int16_t));
for (int i = 0; i < window_size_samples; i++)
{
input[i] = static_cast<float>(input[i]) / 32768; // int16_t normalized to float
}
}
void predict(const std::vector<float> &data)
{
// bytes_to_float_tensor(data);
// Infer
// Create ort tensors
input.assign(data.begin(), data.end());
Ort::Value input_ort = Ort::Value::CreateTensor<float>(
memory_info, input.data(), input.size(), input_node_dims, 2);
Ort::Value state_ort = Ort::Value::CreateTensor<float>(
memory_info, _state.data(), _state.size(), state_node_dims, 3);
Ort::Value sr_ort = Ort::Value::CreateTensor<int64_t>(
memory_info, sr.data(), sr.size(), sr_node_dims, 1);
// Clear and add inputs
ort_inputs.clear();
ort_inputs.emplace_back(std::move(input_ort));
ort_inputs.emplace_back(std::move(state_ort));
ort_inputs.emplace_back(std::move(sr_ort));
// Infer
ort_outputs = session->Run(
Ort::RunOptions{nullptr},
input_node_names.data(), ort_inputs.data(), ort_inputs.size(),
output_node_names.data(), output_node_names.size());
// Output probability & update h,c recursively
float output = ort_outputs[0].GetTensorMutableData<float>()[0];
float *stateN = ort_outputs[1].GetTensorMutableData<float>();
std::memcpy(_state.data(), stateN, size_state * sizeof(float));
// Push forward sample index
current_sample += window_size_samples;
// Reset temp_end when > threshold
if ((output >= threshold) && (temp_end != 0))
{
temp_end = 0;
}
// 1) Silence
if ((output < threshold) && (triggerd == false))
{
// printf("{ silence: %.3f s }\n", 1.0 * current_sample / sample_rate);
}
// 2) Speaking
if ((output >= (threshold - 0.15)) && (triggerd == true))
{
// printf("{ speaking_2: %.3f s }\n", 1.0 * current_sample / sample_rate);
}
// 3) Start
if ((output >= threshold) && (triggerd == false))
{
triggerd = true;
speech_start = current_sample - window_size_samples - speech_pad_samples; // minus window_size_samples to get precise start time point.
printf("{ start: %.3f s }\n", 1.0 * speech_start / sample_rate);
}
// 4) End
if ((output < (threshold - 0.15)) && (triggerd == true))
{
if (temp_end == 0)
{
temp_end = current_sample;
}
// a. silence < min_slience_samples, continue speaking
if ((current_sample - temp_end) < min_silence_samples)
{
// printf("{ speaking_4: %.3f s }\n", 1.0 * current_sample / sample_rate);
// printf("");
}
// b. silence >= min_slience_samples, end speaking
else
{
speech_end = temp_end ? temp_end + speech_pad_samples : current_sample + speech_pad_samples;
temp_end = 0;
triggerd = false;
printf("{ end: %.3f s }\n", 1.0 * speech_end / sample_rate);
}
}
}
private:
// model config
int64_t window_size_samples; // Assign when init, support 256 512 768 for 8k; 512 1024 1536 for 16k.
int sample_rate;
int sr_per_ms; // Assign when init, support 8 or 16
float threshold;
int min_silence_samples; // sr_per_ms * #ms
int speech_pad_samples; // usually a
// model states
bool triggerd = false;
unsigned int speech_start = 0;
unsigned int speech_end = 0;
unsigned int temp_end = 0;
unsigned int current_sample = 0;
// MAX 4294967295 samples / 8sample per ms / 1000 / 60 = 8947 minutes
float output;
// Onnx model
// Inputs
std::vector<Ort::Value> ort_inputs;
std::vector<const char *> input_node_names = {"input", "state", "sr"};
std::vector<float> input;
unsigned int size_state = 2 * 1 * 128; // It's FIXED.
std::vector<float> _state;
std::vector<int64_t> sr;
int64_t input_node_dims[2] = {};
const int64_t state_node_dims[3] = {2, 1, 128};
const int64_t sr_node_dims[1] = {1};
// Outputs
std::vector<Ort::Value> ort_outputs;
std::vector<const char *> output_node_names = {"output", "stateN"};
public:
// Construction
VadIterator(const std::string ModelPath,
int Sample_rate, int frame_size,
float Threshold, int min_silence_duration_ms, int speech_pad_ms)
{
init_onnx_model(ModelPath);
sample_rate = Sample_rate;
sr_per_ms = sample_rate / 1000;
threshold = Threshold;
min_silence_samples = sr_per_ms * min_silence_duration_ms;
speech_pad_samples = sr_per_ms * speech_pad_ms;
window_size_samples = frame_size * sr_per_ms;
input.resize(window_size_samples);
input_node_dims[0] = 1;
input_node_dims[1] = window_size_samples;
_state.resize(size_state);
sr.resize(1);
sr[0] = sample_rate;
}
};
int main()
{
// Read wav
wav::WavReader wav_reader("./recorder.wav");
std::vector<int16_t> data(wav_reader.num_samples());
std::vector<float> input_wav(wav_reader.num_samples());
for (int i = 0; i < wav_reader.num_samples(); i++)
{
data[i] = static_cast<int16_t>(*(wav_reader.data() + i));
}
for (int i = 0; i < wav_reader.num_samples(); i++)
{
input_wav[i] = static_cast<float>(data[i]) / 32768;
}
// ===== Test configs =====
std::string path = "../../files/silero_vad.onnx";
int test_sr = 16000;
int test_frame_ms = 32;
float test_threshold = 0.5f;
int test_min_silence_duration_ms = 0;
int test_speech_pad_ms = 0;
int test_window_samples = test_frame_ms * (test_sr/1000);
VadIterator vad(
path, test_sr, test_frame_ms, test_threshold,
test_min_silence_duration_ms, test_speech_pad_ms);
for (int j = 0; j < wav_reader.num_samples(); j += test_window_samples)
{
std::vector<float> r{&input_wav[0] + j, &input_wav[0] + j + test_window_samples};
auto start = std::chrono::high_resolution_clock::now();
// Predict and print throughout process time
vad.predict(r);
auto end = std::chrono::high_resolution_clock::now();
auto elapsed_time = std::chrono::duration_cast<std::chrono::nanoseconds>(end-start);
std::cout << "== Elapsed time: " << 1.0*elapsed_time.count()/1000000 << "ms" << " ==" <<std::endl;
}
}