mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-04 17:39:22 +08:00
255 lines
8.6 KiB
C++
255 lines
8.6 KiB
C++
#include <iostream>
|
|
#include <vector>
|
|
#include <sstream>
|
|
#include <cstring>
|
|
#include <chrono>
|
|
|
|
#include "onnxruntime_cxx_api.h"
|
|
#include "wav.h"
|
|
|
|
class VadIterator
|
|
{
|
|
// OnnxRuntime resources
|
|
Ort::Env env;
|
|
Ort::SessionOptions session_options;
|
|
std::shared_ptr<Ort::Session> session = nullptr;
|
|
Ort::AllocatorWithDefaultOptions allocator;
|
|
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeCPU);
|
|
|
|
public:
|
|
void init_engine_threads(int inter_threads, int intra_threads)
|
|
{
|
|
// The method should be called in each thread/proc in multi-thread/proc work
|
|
session_options.SetIntraOpNumThreads(intra_threads);
|
|
session_options.SetInterOpNumThreads(inter_threads);
|
|
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
|
|
}
|
|
|
|
void init_onnx_model(const std::string &model_path)
|
|
{
|
|
// Init threads = 1 for
|
|
init_engine_threads(1, 1);
|
|
// Load model
|
|
session = std::make_shared<Ort::Session>(env, model_path.c_str(), session_options);
|
|
}
|
|
|
|
void reset_states()
|
|
{
|
|
// Call reset before each audio start
|
|
std::memset(_h.data(), 0.0f, _h.size() * sizeof(float));
|
|
std::memset(_c.data(), 0.0f, _c.size() * sizeof(float));
|
|
triggerd = false;
|
|
temp_end = 0;
|
|
current_sample = 0;
|
|
}
|
|
|
|
// Call it in predict func. if you prefer raw bytes input.
|
|
void bytes_to_float_tensor(const char *pcm_bytes)
|
|
{
|
|
const int16_t * in_data = reinterpret_cast<const int16_t*>(pcm_bytes);
|
|
for (int i = 0; i < window_size_samples; i++)
|
|
{
|
|
input[i] = static_cast<float>(in_data[i]) / 32768; // int16_t normalized to float
|
|
}
|
|
}
|
|
|
|
|
|
void predict(const std::vector<float> &data)
|
|
{
|
|
// bytes_to_float_tensor(data);
|
|
|
|
// Infer
|
|
// Create ort tensors
|
|
input.assign(data.begin(), data.end());
|
|
Ort::Value input_ort = Ort::Value::CreateTensor<float>(
|
|
memory_info, input.data(), input.size(), input_node_dims, 2);
|
|
Ort::Value sr_ort = Ort::Value::CreateTensor<int64_t>(
|
|
memory_info, sr.data(), sr.size(), sr_node_dims, 1);
|
|
Ort::Value h_ort = Ort::Value::CreateTensor<float>(
|
|
memory_info, _h.data(), _h.size(), hc_node_dims, 3);
|
|
Ort::Value c_ort = Ort::Value::CreateTensor<float>(
|
|
memory_info, _c.data(), _c.size(), hc_node_dims, 3);
|
|
|
|
// Clear and add inputs
|
|
ort_inputs.clear();
|
|
ort_inputs.emplace_back(std::move(input_ort));
|
|
ort_inputs.emplace_back(std::move(sr_ort));
|
|
ort_inputs.emplace_back(std::move(h_ort));
|
|
ort_inputs.emplace_back(std::move(c_ort));
|
|
|
|
// Infer
|
|
ort_outputs = session->Run(
|
|
Ort::RunOptions{nullptr},
|
|
input_node_names.data(), ort_inputs.data(), ort_inputs.size(),
|
|
output_node_names.data(), output_node_names.size());
|
|
|
|
// Output probability & update h,c recursively
|
|
float output = ort_outputs[0].GetTensorMutableData<float>()[0];
|
|
float *hn = ort_outputs[1].GetTensorMutableData<float>();
|
|
std::memcpy(_h.data(), hn, size_hc * sizeof(float));
|
|
float *cn = ort_outputs[2].GetTensorMutableData<float>();
|
|
std::memcpy(_c.data(), cn, size_hc * sizeof(float));
|
|
|
|
// Push forward sample index
|
|
current_sample += window_size_samples;
|
|
|
|
// Reset temp_end when > threshold
|
|
if ((output >= threshold) && (temp_end != 0))
|
|
{
|
|
temp_end = 0;
|
|
}
|
|
// 1) Silence
|
|
if ((output < threshold) && (triggerd == false))
|
|
{
|
|
// printf("{ silence: %.3f s }\n", 1.0 * current_sample / sample_rate);
|
|
}
|
|
// 2) Speaking
|
|
if ((output >= (threshold - 0.15)) && (triggerd == true))
|
|
{
|
|
// printf("{ speaking_2: %.3f s }\n", 1.0 * current_sample / sample_rate);
|
|
}
|
|
|
|
// 3) Start
|
|
if ((output >= threshold) && (triggerd == false))
|
|
{
|
|
triggerd = true;
|
|
speech_start = current_sample - window_size_samples - speech_pad_samples; // minus window_size_samples to get precise start time point.
|
|
printf("{ start: %.3f s }\n", 1.0 * speech_start / sample_rate);
|
|
}
|
|
|
|
// 4) End
|
|
if ((output < (threshold - 0.15)) && (triggerd == true))
|
|
{
|
|
|
|
if (temp_end == 0)
|
|
{
|
|
temp_end = current_sample;
|
|
}
|
|
// a. silence < min_slience_samples, continue speaking
|
|
if ((current_sample - temp_end) < min_silence_samples)
|
|
{
|
|
// printf("{ speaking_4: %.3f s }\n", 1.0 * current_sample / sample_rate);
|
|
// printf("");
|
|
}
|
|
// b. silence >= min_slience_samples, end speaking
|
|
else
|
|
{
|
|
speech_end = temp_end ? temp_end + speech_pad_samples : current_sample + speech_pad_samples;
|
|
temp_end = 0;
|
|
triggerd = false;
|
|
printf("{ end: %.3f s }\n", 1.0 * speech_end / sample_rate);
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
private:
|
|
// model config
|
|
int64_t window_size_samples; // Assign when init, support 256 512 768 for 8k; 512 1024 1536 for 16k.
|
|
int sample_rate;
|
|
int sr_per_ms; // Assign when init, support 8 or 16
|
|
float threshold;
|
|
int min_silence_samples; // sr_per_ms * #ms
|
|
int speech_pad_samples; // usually a
|
|
|
|
// model states
|
|
bool triggerd = false;
|
|
unsigned int speech_start = 0;
|
|
unsigned int speech_end = 0;
|
|
unsigned int temp_end = 0;
|
|
unsigned int current_sample = 0;
|
|
// MAX 4294967295 samples / 8sample per ms / 1000 / 60 = 8947 minutes
|
|
float output;
|
|
|
|
// Onnx model
|
|
// Inputs
|
|
std::vector<Ort::Value> ort_inputs;
|
|
|
|
std::vector<const char *> input_node_names = {"input", "sr", "h", "c"};
|
|
std::vector<float> input;
|
|
std::vector<int64_t> sr;
|
|
unsigned int size_hc = 2 * 1 * 64; // It's FIXED.
|
|
std::vector<float> _h;
|
|
std::vector<float> _c;
|
|
|
|
int64_t input_node_dims[2] = {};
|
|
const int64_t sr_node_dims[1] = {1};
|
|
const int64_t hc_node_dims[3] = {2, 1, 64};
|
|
|
|
// Outputs
|
|
std::vector<Ort::Value> ort_outputs;
|
|
std::vector<const char *> output_node_names = {"output", "hn", "cn"};
|
|
|
|
|
|
public:
|
|
// Construction
|
|
VadIterator(const std::string ModelPath,
|
|
int Sample_rate, int frame_size,
|
|
float Threshold, int min_silence_duration_ms, int speech_pad_ms)
|
|
{
|
|
init_onnx_model(ModelPath);
|
|
sample_rate = Sample_rate;
|
|
sr_per_ms = sample_rate / 1000;
|
|
threshold = Threshold;
|
|
min_silence_samples = sr_per_ms * min_silence_duration_ms;
|
|
speech_pad_samples = sr_per_ms * speech_pad_ms;
|
|
window_size_samples = frame_size * sr_per_ms;
|
|
|
|
input.resize(window_size_samples);
|
|
input_node_dims[0] = 1;
|
|
input_node_dims[1] = window_size_samples;
|
|
// std::cout << "== Input size" << input.size() << std::endl;
|
|
_h.resize(size_hc);
|
|
_c.resize(size_hc);
|
|
sr.resize(1);
|
|
sr[0] = sample_rate;
|
|
}
|
|
|
|
};
|
|
|
|
int main()
|
|
{
|
|
|
|
// Read wav
|
|
wav::WavReader wav_reader("./test_for_vad.wav");
|
|
std::vector<int16_t> data(wav_reader.num_samples());
|
|
std::vector<float> input_wav(wav_reader.num_samples());
|
|
|
|
for (int i = 0; i < wav_reader.num_samples(); i++)
|
|
{
|
|
data[i] = static_cast<int16_t>(*(wav_reader.data() + i));
|
|
}
|
|
|
|
for (int i = 0; i < wav_reader.num_samples(); i++)
|
|
{
|
|
input_wav[i] = static_cast<float>(data[i]) / 32768;
|
|
}
|
|
|
|
// ===== Test configs =====
|
|
std::string path = "../files/silero_vad.onnx";
|
|
int test_sr = 8000;
|
|
int test_frame_ms = 64;
|
|
float test_threshold = 0.5f;
|
|
int test_min_silence_duration_ms = 0;
|
|
int test_speech_pad_ms = 0;
|
|
int test_window_samples = test_frame_ms * (test_sr/1000);
|
|
|
|
VadIterator vad(
|
|
path, test_sr, test_frame_ms, test_threshold,
|
|
test_min_silence_duration_ms, test_speech_pad_ms);
|
|
|
|
for (int j = 0; j < wav_reader.num_samples(); j += test_window_samples)
|
|
{
|
|
// std::cout << "== 4" << std::endl;
|
|
std::vector<float> r{&input_wav[0] + j, &input_wav[0] + j + test_window_samples};
|
|
auto start = std::chrono::high_resolution_clock::now();
|
|
// Predict and print throughout process time
|
|
vad.predict(r);
|
|
auto end = std::chrono::high_resolution_clock::now();
|
|
auto elapsed_time = std::chrono::duration_cast<std::chrono::nanoseconds>(end-start);
|
|
// std::cout << "== Elapsed time: " << 1.0*elapsed_time.count()/1000000 << "ms" << " ==" <<std::endl;
|
|
|
|
}
|
|
}
|