1 Commits

Author SHA1 Message Date
Alexander Veysov
29102cf6a3 Update README.md 2024-09-24 15:16:05 +03:00
39 changed files with 586 additions and 1867 deletions

View File

@@ -1,39 +0,0 @@
name: Test Package
on:
workflow_dispatch: # запуск вручную
jobs:
test:
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
python-version: ["3.8","3.9","3.10","3.11","3.12","3.13"]
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install build hatchling pytest soundfile
- name: Build package
run: python -m build --wheel --outdir dist
- name: Install package
run: |
import glob, subprocess, sys
whl = glob.glob("dist/*.whl")[0]
subprocess.check_call([sys.executable, "-m", "pip", "install", whl])
shell: python
- name: Run tests
run: pytest tests

View File

@@ -1,20 +0,0 @@
cff-version: 1.2.0
message: "If you use this software, please cite it as below."
title: "Silero VAD"
authors:
- family-names: "Silero Team"
email: "hello@silero.ai"
type: software
repository-code: "https://github.com/snakers4/silero-vad"
license: MIT
abstract: "Pre-trained enterprise-grade Voice Activity Detector (VAD), Number Detector and Language Classifier"
preferred-citation:
type: software
authors:
- family-names: "Silero Team"
email: "hello@silero.ai"
title: "Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD), Number Detector and Language Classifier"
year: 2024
publisher: "GitHub"
journal: "GitHub repository"
howpublished: "https://github.com/snakers4/silero-vad"

View File

@@ -1,6 +1,6 @@
[![Mailing list : test](http://img.shields.io/badge/Email-gray.svg?style=for-the-badge&logo=gmail)](mailto:hello@silero.ai) [![Mailing list : test](http://img.shields.io/badge/Telegram-blue.svg?style=for-the-badge&logo=telegram)](https://t.me/silero_speech) [![License: CC BY-NC 4.0](https://img.shields.io/badge/License-MIT-lightgrey.svg?style=for-the-badge)](https://github.com/snakers4/silero-vad/blob/master/LICENSE) [![downloads](https://img.shields.io/pypi/dm/silero-vad?style=for-the-badge)](https://pypi.org/project/silero-vad/)
[![Mailing list : test](http://img.shields.io/badge/Email-gray.svg?style=for-the-badge&logo=gmail)](mailto:hello@silero.ai) [![Mailing list : test](http://img.shields.io/badge/Telegram-blue.svg?style=for-the-badge&logo=telegram)](https://t.me/silero_speech) [![License: CC BY-NC 4.0](https://img.shields.io/badge/License-MIT-lightgrey.svg?style=for-the-badge)](https://github.com/snakers4/silero-vad/blob/master/LICENSE)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-vad/blob/master/silero-vad.ipynb) [![Test Package](https://github.com/snakers4/silero-vad/actions/workflows/test.yml/badge.svg)](https://github.com/snakers4/silero-vad/actions/workflows/test.yml) [![Pypi version](https://img.shields.io/pypi/v/silero-vad)](https://pypi.org/project/silero-vad/) [![Python version](https://img.shields.io/pypi/pyversions/silero-vad)](https://pypi.org/project/silero-vad)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-vad/blob/master/silero-vad.ipynb)
![header](https://user-images.githubusercontent.com/12515440/89997349-b3523080-dc94-11ea-9906-ca2e8bc50535.png)
@@ -13,7 +13,7 @@
<br/>
<p align="center">
<img src="https://github.com/user-attachments/assets/f2940867-0a51-4bdb-8c14-1129d3c44e64" />
<img src="https://github.com/snakers4/silero-vad/assets/36505480/300bd062-4da5-4f19-9736-9c144a45d7a7" />
</p>
@@ -22,8 +22,6 @@
https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc-9be7-004c891dd481.mp4
Please note, that video loads only if you are logged in your GitHub account.
</details>
<br/>
@@ -66,11 +64,7 @@ If you are planning to run the VAD using solely the `onnx-runtime`, it will run
from silero_vad import load_silero_vad, read_audio, get_speech_timestamps
model = load_silero_vad()
wav = read_audio('path_to_audio_file')
speech_timestamps = get_speech_timestamps(
wav,
model,
return_seconds=True, # Return speech timestamps in seconds (default is samples)
)
speech_timestamps = get_speech_timestamps(wav, model)
```
**Using torch.hub**:
@@ -82,11 +76,7 @@ model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad', model='silero_v
(get_speech_timestamps, _, read_audio, _, _) = utils
wav = read_audio('path_to_audio_file')
speech_timestamps = get_speech_timestamps(
wav,
model,
return_seconds=True, # Return speech timestamps in seconds (default is samples)
)
speech_timestamps = get_speech_timestamps(wav, model)
```
<br/>
@@ -175,4 +165,4 @@ Please see our [wiki](https://github.com/snakers4/silero-models/wiki) for releva
- Voice activity detection for the [browser](https://github.com/ricky0123/vad) using ONNX Runtime Web
- [Rust](https://github.com/snakers4/silero-vad/tree/master/examples/rust-example), [Go](https://github.com/snakers4/silero-vad/tree/master/examples/go), [Java](https://github.com/snakers4/silero-vad/tree/master/examples/java-example), [C++](https://github.com/snakers4/silero-vad/tree/master/examples/cpp), [C#](https://github.com/snakers4/silero-vad/tree/master/examples/csharp) and [other](https://github.com/snakers4/silero-vad/tree/master/examples) community examples
- [Rust](https://github.com/snakers4/silero-vad/tree/master/examples/rust-example), [Go](https://github.com/snakers4/silero-vad/tree/master/examples/go), [Java](https://github.com/snakers4/silero-vad/tree/master/examples/java-example) and [other](https://github.com/snakers4/silero-vad/tree/master/examples) examples

View File

@@ -17,7 +17,6 @@
},
"outputs": [],
"source": [
"#!apt install ffmpeg\n",
"!pip -q install pydub\n",
"from google.colab import output\n",
"from base64 import b64decode, b64encode\n",
@@ -38,12 +37,13 @@
" model='silero_vad',\n",
" force_reload=True)\n",
"\n",
"def int2float(audio):\n",
" samples = audio.get_array_of_samples()\n",
" new_sound = audio._spawn(samples)\n",
" arr = np.array(samples).astype(np.float32)\n",
" arr = arr / np.abs(arr).max()\n",
" return arr\n",
"def int2float(sound):\n",
" abs_max = np.abs(sound).max()\n",
" sound = sound.astype('float32')\n",
" if abs_max > 0:\n",
" sound *= 1/32768\n",
" sound = sound.squeeze()\n",
" return sound\n",
"\n",
"AUDIO_HTML = \"\"\"\n",
"<script>\n",
@@ -68,10 +68,10 @@
" //bitsPerSecond: 8000, //chrome seems to ignore, always 48k\n",
" mimeType : 'audio/webm;codecs=opus'\n",
" //mimeType : 'audio/webm;codecs=pcm'\n",
" };\n",
" }; \n",
" //recorder = new MediaRecorder(stream, options);\n",
" recorder = new MediaRecorder(stream);\n",
" recorder.ondataavailable = function(e) {\n",
" recorder.ondataavailable = function(e) { \n",
" var url = URL.createObjectURL(e.data);\n",
" // var preview = document.createElement('audio');\n",
" // preview.controls = true;\n",
@@ -79,7 +79,7 @@
" // document.body.appendChild(preview);\n",
"\n",
" reader = new FileReader();\n",
" reader.readAsDataURL(e.data);\n",
" reader.readAsDataURL(e.data); \n",
" reader.onloadend = function() {\n",
" base64data = reader.result;\n",
" //console.log(\"Inside FileReader:\" + base64data);\n",
@@ -121,7 +121,7 @@
"\n",
"}\n",
"});\n",
"\n",
" \n",
"</script>\n",
"\"\"\"\n",
"\n",
@@ -133,8 +133,8 @@
" audio.export('test.mp3', format='mp3')\n",
" audio = audio.set_channels(1)\n",
" audio = audio.set_frame_rate(16000)\n",
" audio_float = int2float(audio)\n",
" audio_tens = torch.tensor(audio_float)\n",
" audio_float = int2float(np.array(audio.get_array_of_samples()))\n",
" audio_tens = torch.tensor(audio_float )\n",
" return audio_tens\n",
"\n",
"def make_animation(probs, audio_duration, interval=40):\n",
@@ -154,18 +154,19 @@
" def animate(i):\n",
" x = i * interval / 1000 - 0.04\n",
" y = np.linspace(0, 1.02, 2)\n",
"\n",
" \n",
" line.set_data(x, y)\n",
" line.set_color('#990000')\n",
" return line,\n",
" anim = FuncAnimation(fig, animate, init_func=init, interval=interval, save_count=int(audio_duration / (interval / 1000)))\n",
"\n",
" f = r\"animation.mp4\"\n",
" writervideo = FFMpegWriter(fps=1000/interval)\n",
" anim = FuncAnimation(fig, animate, init_func=init, interval=interval, save_count=audio_duration / (interval / 1000))\n",
"\n",
" f = r\"animation.mp4\" \n",
" writervideo = FFMpegWriter(fps=1000/interval) \n",
" anim.save(f, writer=writervideo)\n",
" plt.close('all')\n",
"\n",
"def combine_audio(vidname, audname, outname, fps=25):\n",
"def combine_audio(vidname, audname, outname, fps=25): \n",
" my_clip = mpe.VideoFileClip(vidname, verbose=False)\n",
" audio_background = mpe.AudioFileClip(audname)\n",
" final_clip = my_clip.set_audio(audio_background)\n",
@@ -173,10 +174,15 @@
"\n",
"def record_make_animation():\n",
" tensor = record()\n",
"\n",
" print('Calculating probabilities...')\n",
" speech_probs = []\n",
" window_size_samples = 512\n",
" speech_probs = model.audio_forward(tensor, sr=16000)[0].tolist()\n",
" for i in range(0, len(tensor), window_size_samples):\n",
" if len(tensor[i: i+ window_size_samples]) < window_size_samples:\n",
" break\n",
" speech_prob = model(tensor[i: i+ window_size_samples], 16000).item()\n",
" speech_probs.append(speech_prob)\n",
" model.reset_states()\n",
" print('Making animation...')\n",
" make_animation(speech_probs, len(tensor) / 16000)\n",
@@ -190,9 +196,7 @@
" <video width=800 controls>\n",
" <source src=\"%s\" type=\"video/mp4\">\n",
" </video>\n",
" \"\"\" % data_url))\n",
"\n",
" return speech_probs"
" \"\"\" % data_url))"
]
},
{
@@ -212,7 +216,7 @@
},
"outputs": [],
"source": [
"speech_probs = record_make_animation()"
"record_make_animation()"
]
}
],

View File

@@ -1,227 +1,211 @@
#ifndef _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <iostream>
#include <vector>
#include <sstream>
#include <cstring>
#include <limits>
#include <chrono>
#include <iomanip>
#include <memory>
#include <string>
#include <stdexcept>
#include <iostream>
#include <string>
#include "onnxruntime_cxx_api.h"
#include "wav.h"
#include <cstdio>
#include <cstdarg>
#include <cmath> // for std::rint
#if __cplusplus < 201703L
#include <memory>
#endif
//#define __DEBUG_SPEECH_PROB___
#include "onnxruntime_cxx_api.h"
#include "wav.h" // For reading WAV files
// timestamp_t class: stores the start and end (in samples) of a speech segment.
class timestamp_t {
class timestamp_t
{
public:
int start;
int end;
// default + parameterized constructor
timestamp_t(int start = -1, int end = -1)
: start(start), end(end) { }
: start(start), end(end)
{
};
timestamp_t& operator=(const timestamp_t& a) {
// assignment operator modifies object, therefore non-const
timestamp_t& operator=(const timestamp_t& a)
{
start = a.start;
end = a.end;
return *this;
}
};
bool operator==(const timestamp_t& a) const {
// equality comparison. doesn't modify object. therefore const.
bool operator==(const timestamp_t& a) const
{
return (start == a.start && end == a.end);
}
// Returns a formatted string of the timestamp.
std::string c_str() const {
return format("{start:%08d, end:%08d}", start, end);
}
};
std::string c_str()
{
//return std::format("timestamp {:08d}, {:08d}", start, end);
return format("{start:%08d,end:%08d}", start, end);
};
private:
// Helper function for formatting.
std::string format(const char* fmt, ...) const {
std::string format(const char* fmt, ...)
{
char buf[256];
va_list args;
va_start(args, fmt);
const auto r = std::vsnprintf(buf, sizeof(buf), fmt, args);
const auto r = std::vsnprintf(buf, sizeof buf, fmt, args);
va_end(args);
if (r < 0)
// conversion failed
return {};
const size_t len = r;
if (len < sizeof(buf))
return std::string(buf, len);
if (len < sizeof buf)
// we fit in the buffer
return { buf, len };
#if __cplusplus >= 201703L
// C++17: Create a string and write to its underlying array
std::string s(len, '\0');
va_start(args, fmt);
std::vsnprintf(s.data(), len + 1, fmt, args);
va_end(args);
return s;
#else
// C++11 or C++14: We need to allocate scratch memory
auto vbuf = std::unique_ptr<char[]>(new char[len + 1]);
va_start(args, fmt);
std::vsnprintf(vbuf.get(), len + 1, fmt, args);
va_end(args);
return std::string(vbuf.get(), len);
return { vbuf.get(), len };
#endif
}
};
};
// VadIterator class: uses ONNX Runtime to detect speech segments.
class VadIterator {
class VadIterator
{
private:
// ONNX Runtime resources
// OnnxRuntime resources
Ort::Env env;
Ort::SessionOptions session_options;
std::shared_ptr<Ort::Session> session = nullptr;
Ort::AllocatorWithDefaultOptions allocator;
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeCPU);
// ----- Context-related additions -----
const int context_samples = 64; // For 16kHz, 64 samples are added as context.
std::vector<float> _context; // Holds the last 64 samples from the previous chunk (initialized to zero).
// Original window size (e.g., 32ms corresponds to 512 samples)
int window_size_samples;
// Effective window size = window_size_samples + context_samples
int effective_window_size;
// Additional declaration: samples per millisecond
int sr_per_ms;
// ONNX Runtime input/output buffers
std::vector<Ort::Value> ort_inputs;
std::vector<const char*> input_node_names = { "input", "state", "sr" };
std::vector<float> input;
unsigned int size_state = 2 * 1 * 128;
std::vector<float> _state;
std::vector<int64_t> sr;
int64_t input_node_dims[2] = {};
const int64_t state_node_dims[3] = { 2, 1, 128 };
const int64_t sr_node_dims[1] = { 1 };
std::vector<Ort::Value> ort_outputs;
std::vector<const char*> output_node_names = { "output", "stateN" };
// Model configuration parameters
int sample_rate;
float threshold;
int min_silence_samples;
int min_silence_samples_at_max_speech;
int min_speech_samples;
float max_speech_samples;
int speech_pad_samples;
int audio_length_samples;
// State management
bool triggered = false;
unsigned int temp_end = 0;
unsigned int current_sample = 0;
int prev_end;
int next_start = 0;
std::vector<timestamp_t> speeches;
timestamp_t current_speech;
// Loads the ONNX model.
void init_onnx_model(const std::wstring& model_path) {
init_engine_threads(1, 1);
session = std::make_shared<Ort::Session>(env, model_path.c_str(), session_options);
}
// Initializes threading settings.
void init_engine_threads(int inter_threads, int intra_threads) {
private:
void init_engine_threads(int inter_threads, int intra_threads)
{
// The method should be called in each thread/proc in multi-thread/proc work
session_options.SetIntraOpNumThreads(intra_threads);
session_options.SetInterOpNumThreads(inter_threads);
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
}
};
// Resets internal state (_state, _context, etc.)
void reset_states() {
std::memset(_state.data(), 0, _state.size() * sizeof(float));
void init_onnx_model(const std::wstring& model_path)
{
// Init threads = 1 for
init_engine_threads(1, 1);
// Load model
session = std::make_shared<Ort::Session>(env, model_path.c_str(), session_options);
};
void reset_states()
{
// Call reset before each audio start
std::memset(_state.data(), 0.0f, _state.size() * sizeof(float));
triggered = false;
temp_end = 0;
current_sample = 0;
prev_end = next_start = 0;
speeches.clear();
current_speech = timestamp_t();
std::fill(_context.begin(), _context.end(), 0.0f);
}
};
// Inference: runs inference on one chunk of input data.
// data_chunk is expected to have window_size_samples samples.
void predict(const std::vector<float>& data_chunk) {
// Build new input: first context_samples from _context, followed by the current chunk (window_size_samples).
std::vector<float> new_data(effective_window_size, 0.0f);
std::copy(_context.begin(), _context.end(), new_data.begin());
std::copy(data_chunk.begin(), data_chunk.end(), new_data.begin() + context_samples);
input = new_data;
// Create input tensor (input_node_dims[1] is already set to effective_window_size).
void predict(const std::vector<float> &data)
{
// Infer
// Create ort tensors
input.assign(data.begin(), data.end());
Ort::Value input_ort = Ort::Value::CreateTensor<float>(
memory_info, input.data(), input.size(), input_node_dims, 2);
Ort::Value state_ort = Ort::Value::CreateTensor<float>(
memory_info, _state.data(), _state.size(), state_node_dims, 3);
Ort::Value sr_ort = Ort::Value::CreateTensor<int64_t>(
memory_info, sr.data(), sr.size(), sr_node_dims, 1);
// Clear and add inputs
ort_inputs.clear();
ort_inputs.emplace_back(std::move(input_ort));
ort_inputs.emplace_back(std::move(state_ort));
ort_inputs.emplace_back(std::move(sr_ort));
// Run inference.
// Infer
ort_outputs = session->Run(
Ort::RunOptions{ nullptr },
Ort::RunOptions{nullptr},
input_node_names.data(), ort_inputs.data(), ort_inputs.size(),
output_node_names.data(), output_node_names.size());
// Output probability & update h,c recursively
float speech_prob = ort_outputs[0].GetTensorMutableData<float>()[0];
float* stateN = ort_outputs[1].GetTensorMutableData<float>();
float *stateN = ort_outputs[1].GetTensorMutableData<float>();
std::memcpy(_state.data(), stateN, size_state * sizeof(float));
current_sample += static_cast<unsigned int>(window_size_samples); // Advance by the original window size.
// If speech is detected (probability >= threshold)
if (speech_prob >= threshold) {
// Push forward sample index
current_sample += window_size_samples;
// Reset temp_end when > threshold
if ((speech_prob >= threshold))
{
#ifdef __DEBUG_SPEECH_PROB___
float speech = current_sample - window_size_samples;
printf("{ start: %.3f s (%.3f) %08d}\n", 1.0f * speech / sample_rate, speech_prob, current_sample - window_size_samples);
#endif
if (temp_end != 0) {
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
printf("{ start: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample- window_size_samples);
#endif //__DEBUG_SPEECH_PROB___
if (temp_end != 0)
{
temp_end = 0;
if (next_start < prev_end)
next_start = current_sample - window_size_samples;
}
if (!triggered) {
if (triggered == false)
{
triggered = true;
current_speech.start = current_sample - window_size_samples;
}
// Update context: copy the last context_samples from new_data.
std::copy(new_data.end() - context_samples, new_data.end(), _context.begin());
return;
}
// If the speech segment becomes too long.
if (triggered && ((current_sample - current_speech.start) > max_speech_samples)) {
if (
(triggered == true)
&& ((current_sample - current_speech.start) > max_speech_samples)
) {
if (prev_end > 0) {
current_speech.end = prev_end;
speeches.push_back(current_speech);
current_speech = timestamp_t();
// previously reached silence(< neg_thres) and is still not speech(< thres)
if (next_start < prev_end)
triggered = false;
else
else{
current_speech.start = next_start;
}
prev_end = 0;
next_start = 0;
temp_end = 0;
}
else {
else{
current_speech.end = current_sample;
speeches.push_back(current_speech);
current_speech = timestamp_t();
@@ -230,29 +214,53 @@ private:
temp_end = 0;
triggered = false;
}
std::copy(new_data.end() - context_samples, new_data.end(), _context.begin());
return;
}
if ((speech_prob >= (threshold - 0.15)) && (speech_prob < threshold)) {
// When the speech probability temporarily drops but is still in speech, update context without changing state.
std::copy(new_data.end() - context_samples, new_data.end(), _context.begin());
return;
}
if (speech_prob < (threshold - 0.15)) {
#ifdef __DEBUG_SPEECH_PROB___
float speech = current_sample - window_size_samples - speech_pad_samples;
printf("{ end: %.3f s (%.3f) %08d}\n", 1.0f * speech / sample_rate, speech_prob, current_sample - window_size_samples);
#endif
if ((speech_prob >= (threshold - 0.15)) && (speech_prob < threshold))
{
if (triggered) {
#ifdef __DEBUG_SPEECH_PROB___
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
printf("{ speeking: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
#endif //__DEBUG_SPEECH_PROB___
}
else {
#ifdef __DEBUG_SPEECH_PROB___
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
printf("{ silence: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
#endif //__DEBUG_SPEECH_PROB___
}
return;
}
// 4) End
if ((speech_prob < (threshold - 0.15)))
{
#ifdef __DEBUG_SPEECH_PROB___
float speech = current_sample - window_size_samples - speech_pad_samples; // minus window_size_samples to get precise start time point.
printf("{ end: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
#endif //__DEBUG_SPEECH_PROB___
if (triggered == true)
{
if (temp_end == 0)
{
temp_end = current_sample;
}
if (current_sample - temp_end > min_silence_samples_at_max_speech)
prev_end = temp_end;
if ((current_sample - temp_end) >= min_silence_samples) {
// a. silence < min_slience_samples, continue speaking
if ((current_sample - temp_end) < min_silence_samples)
{
}
// b. silence >= min_slience_samples, end speaking
else
{
current_speech.end = temp_end;
if (current_speech.end - current_speech.start > min_speech_samples) {
if (current_speech.end - current_speech.start > min_speech_samples)
{
speeches.push_back(current_speech);
current_speech = timestamp_t();
prev_end = 0;
@@ -262,23 +270,27 @@ private:
}
}
}
std::copy(new_data.end() - context_samples, new_data.end(), _context.begin());
else {
// may first windows see end state.
}
return;
}
}
};
public:
// Process the entire audio input.
void process(const std::vector<float>& input_wav) {
void process(const std::vector<float>& input_wav)
{
reset_states();
audio_length_samples = static_cast<int>(input_wav.size());
// Process audio in chunks of window_size_samples (e.g., 512 samples)
for (size_t j = 0; j < static_cast<size_t>(audio_length_samples); j += static_cast<size_t>(window_size_samples)) {
if (j + static_cast<size_t>(window_size_samples) > static_cast<size_t>(audio_length_samples))
audio_length_samples = input_wav.size();
for (int j = 0; j < audio_length_samples; j += window_size_samples)
{
if (j + window_size_samples > audio_length_samples)
break;
std::vector<float> chunk(&input_wav[j], &input_wav[j] + window_size_samples);
predict(chunk);
std::vector<float> r{ &input_wav[0] + j, &input_wav[0] + j + window_size_samples };
predict(r);
}
if (current_speech.start >= 0) {
current_speech.end = audio_length_samples;
speeches.push_back(current_speech);
@@ -288,80 +300,179 @@ public:
temp_end = 0;
triggered = false;
}
};
void process(const std::vector<float>& input_wav, std::vector<float>& output_wav)
{
process(input_wav);
collect_chunks(input_wav, output_wav);
}
// Returns the detected speech timestamps.
const std::vector<timestamp_t> get_speech_timestamps() const {
void collect_chunks(const std::vector<float>& input_wav, std::vector<float>& output_wav)
{
output_wav.clear();
for (int i = 0; i < speeches.size(); i++) {
#ifdef __DEBUG_SPEECH_PROB___
std::cout << speeches[i].c_str() << std::endl;
#endif //#ifdef __DEBUG_SPEECH_PROB___
std::vector<float> slice(&input_wav[speeches[i].start], &input_wav[speeches[i].end]);
output_wav.insert(output_wav.end(),slice.begin(),slice.end());
}
};
const std::vector<timestamp_t> get_speech_timestamps() const
{
return speeches;
}
// Public method to reset the internal state.
void reset() {
reset_states();
}
void drop_chunks(const std::vector<float>& input_wav, std::vector<float>& output_wav)
{
output_wav.clear();
int current_start = 0;
for (int i = 0; i < speeches.size(); i++) {
std::vector<float> slice(&input_wav[current_start],&input_wav[speeches[i].start]);
output_wav.insert(output_wav.end(), slice.begin(), slice.end());
current_start = speeches[i].end;
}
std::vector<float> slice(&input_wav[current_start], &input_wav[input_wav.size()]);
output_wav.insert(output_wav.end(), slice.begin(), slice.end());
};
private:
// model config
int64_t window_size_samples; // Assign when init, support 256 512 768 for 8k; 512 1024 1536 for 16k.
int sample_rate; //Assign when init support 16000 or 8000
int sr_per_ms; // Assign when init, support 8 or 16
float threshold;
int min_silence_samples; // sr_per_ms * #ms
int min_silence_samples_at_max_speech; // sr_per_ms * #98
int min_speech_samples; // sr_per_ms * #ms
float max_speech_samples;
int speech_pad_samples; // usually a
int audio_length_samples;
// model states
bool triggered = false;
unsigned int temp_end = 0;
unsigned int current_sample = 0;
// MAX 4294967295 samples / 8sample per ms / 1000 / 60 = 8947 minutes
int prev_end;
int next_start = 0;
//Output timestamp
std::vector<timestamp_t> speeches;
timestamp_t current_speech;
// Onnx model
// Inputs
std::vector<Ort::Value> ort_inputs;
std::vector<const char *> input_node_names = {"input", "state", "sr"};
std::vector<float> input;
unsigned int size_state = 2 * 1 * 128; // It's FIXED.
std::vector<float> _state;
std::vector<int64_t> sr;
int64_t input_node_dims[2] = {};
const int64_t state_node_dims[3] = {2, 1, 128};
const int64_t sr_node_dims[1] = {1};
// Outputs
std::vector<Ort::Value> ort_outputs;
std::vector<const char *> output_node_names = {"output", "stateN"};
public:
// Constructor: sets model path, sample rate, window size (ms), and other parameters.
// The parameters are set to match the Python version.
// Construction
VadIterator(const std::wstring ModelPath,
int Sample_rate = 16000, int windows_frame_size = 32,
float Threshold = 0.5, int min_silence_duration_ms = 100,
int speech_pad_ms = 30, int min_speech_duration_ms = 250,
float Threshold = 0.5, int min_silence_duration_ms = 0,
int speech_pad_ms = 32, int min_speech_duration_ms = 32,
float max_speech_duration_s = std::numeric_limits<float>::infinity())
: sample_rate(Sample_rate), threshold(Threshold), speech_pad_samples(speech_pad_ms), prev_end(0)
{
sr_per_ms = sample_rate / 1000; // e.g., 16000 / 1000 = 16
window_size_samples = windows_frame_size * sr_per_ms; // e.g., 32ms * 16 = 512 samples
effective_window_size = window_size_samples + context_samples; // e.g., 512 + 64 = 576 samples
init_onnx_model(ModelPath);
threshold = Threshold;
sample_rate = Sample_rate;
sr_per_ms = sample_rate / 1000;
window_size_samples = windows_frame_size * sr_per_ms;
min_speech_samples = sr_per_ms * min_speech_duration_ms;
speech_pad_samples = sr_per_ms * speech_pad_ms;
max_speech_samples = (
sample_rate * max_speech_duration_s
- window_size_samples
- 2 * speech_pad_samples
);
min_silence_samples = sr_per_ms * min_silence_duration_ms;
min_silence_samples_at_max_speech = sr_per_ms * 98;
input.resize(window_size_samples);
input_node_dims[0] = 1;
input_node_dims[1] = effective_window_size;
input_node_dims[1] = window_size_samples;
_state.resize(size_state);
sr.resize(1);
sr[0] = sample_rate;
_context.assign(context_samples, 0.0f);
min_speech_samples = sr_per_ms * min_speech_duration_ms;
max_speech_samples = (sample_rate * max_speech_duration_s - window_size_samples - 2 * speech_pad_samples);
min_silence_samples = sr_per_ms * min_silence_duration_ms;
min_silence_samples_at_max_speech = sr_per_ms * 98;
init_onnx_model(ModelPath);
}
};
};
int main() {
// Read the WAV file (expects 16000 Hz, mono, PCM).
wav::WavReader wav_reader("audio/recorder.wav"); // File located in the "audio" folder.
int numSamples = wav_reader.num_samples();
std::vector<float> input_wav(static_cast<size_t>(numSamples));
for (size_t i = 0; i < static_cast<size_t>(numSamples); i++) {
int main()
{
std::vector<timestamp_t> stamps;
// Read wav
wav::WavReader wav_reader("recorder.wav"); //16000,1,32float
std::vector<float> input_wav(wav_reader.num_samples());
std::vector<float> output_wav;
for (int i = 0; i < wav_reader.num_samples(); i++)
{
input_wav[i] = static_cast<float>(*(wav_reader.data() + i));
}
// Set the ONNX model path (file located in the "model" folder).
std::wstring model_path = L"model/silero_vad.onnx";
// Initialize the VadIterator.
VadIterator vad(model_path);
// Process the audio.
// ===== Test configs =====
std::wstring path = L"silero_vad.onnx";
VadIterator vad(path);
// ==============================================
// ==== = Example 1 of full function =====
// ==============================================
vad.process(input_wav);
// Retrieve the speech timestamps (in samples).
std::vector<timestamp_t> stamps = vad.get_speech_timestamps();
// 1.a get_speech_timestamps
stamps = vad.get_speech_timestamps();
for (int i = 0; i < stamps.size(); i++) {
// Convert timestamps to seconds and round to one decimal place (for 16000 Hz).
const float sample_rate_float = 16000.0f;
for (size_t i = 0; i < stamps.size(); i++) {
float start_sec = std::rint((stamps[i].start / sample_rate_float) * 10.0f) / 10.0f;
float end_sec = std::rint((stamps[i].end / sample_rate_float) * 10.0f) / 10.0f;
std::cout << "Speech detected from "
<< std::fixed << std::setprecision(1) << start_sec
<< " s to "
<< std::fixed << std::setprecision(1) << end_sec
<< " s" << std::endl;
std::cout << stamps[i].c_str() << std::endl;
}
// Optionally, reset the internal state.
vad.reset();
// 1.b collect_chunks output wav
vad.collect_chunks(input_wav, output_wav);
return 0;
// 1.c drop_chunks output wav
vad.drop_chunks(input_wav, output_wav);
// ==============================================
// ===== Example 2 of simple full function =====
// ==============================================
vad.process(input_wav, output_wav);
stamps = vad.get_speech_timestamps();
for (int i = 0; i < stamps.size(); i++) {
std::cout << stamps[i].c_str() << std::endl;
}
// ==============================================
// ===== Example 3 of full function =====
// ==============================================
for(int i = 0; i<2; i++)
vad.process(input_wav, output_wav);
}

View File

@@ -12,10 +12,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef FRONTEND_WAV_H_
#define FRONTEND_WAV_H_
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
@@ -24,8 +24,6 @@
#include <string>
#include <iostream>
// #include "utils/log.h"
namespace wav {
@@ -232,6 +230,6 @@ class WavWriter {
int bits_per_sample_;
};
} // namespace wav
} // namespace wenet
#endif // FRONTEND_WAV_H_

View File

@@ -1,45 +0,0 @@
# Silero-VAD V5 in C++ (based on LibTorch)
This is the source code for Silero-VAD V5 in C++, utilizing LibTorch. The primary implementation is CPU-based, and you should compare its results with the Python version. Only results at 16kHz have been tested.
Additionally, batch and CUDA inference options are available if you want to explore further. Note that when using batch inference, the speech probabilities may slightly differ from the standard version, likely due to differences in caching. Unlike individual input processing, batch inference may not use the cache from previous chunks. Despite this, batch inference offers significantly faster processing. For optimal performance, consider adjusting the threshold when using batch inference.
## Requirements
- GCC 11.4.0 (GCC >= 5.1)
- LibTorch 1.13.0 (other versions are also acceptable)
## Download LibTorch
```bash
-CPU Version
wget https://download.pytorch.org/libtorch/cpu/libtorch-shared-with-deps-1.13.0%2Bcpu.zip
unzip libtorch-shared-with-deps-1.13.0+cpu.zip'
-CUDA Version
wget https://download.pytorch.org/libtorch/cu116/libtorch-shared-with-deps-1.13.0%2Bcu116.zip
unzip libtorch-shared-with-deps-1.13.0+cu116.zip
```
## Compilation
```bash
-CPU Version
g++ main.cc silero_torch.cc -I ./libtorch/include/ -I ./libtorch/include/torch/csrc/api/include -L ./libtorch/lib/ -ltorch -ltorch_cpu -lc10 -Wl,-rpath,./libtorch/lib/ -o silero -std=c++14 -D_GLIBCXX_USE_CXX11_ABI=0
-CUDA Version
g++ main.cc silero_torch.cc -I ./libtorch/include/ -I ./libtorch/include/torch/csrc/api/include -L ./libtorch/lib/ -ltorch -ltorch_cuda -ltorch_cpu -lc10 -Wl,-rpath,./libtorch/lib/ -o silero -std=c++14 -D_GLIBCXX_USE_CXX11_ABI=0 -DUSE_GPU
```
## Optional Compilation Flags
-DUSE_BATCH: Enable batch inference
-DUSE_GPU: Use GPU for inference
## Run the Program
To run the program, use the following command:
`./silero aepyx.wav 16000 0.5`
The sample file aepyx.wav is part of the Voxconverse dataset.
File details: aepyx.wav is a 16kHz, 16-bit audio file.

Binary file not shown.

View File

@@ -1,54 +0,0 @@
#include <iostream>
#include "silero_torch.h"
#include "wav.h"
int main(int argc, char* argv[]) {
if(argc != 4){
std::cerr<<"Usage : "<<argv[0]<<" <wav.path> <SampleRate> <Threshold>"<<std::endl;
std::cerr<<"Usage : "<<argv[0]<<" sample.wav 16000 0.5"<<std::endl;
return 1;
}
std::string wav_path = argv[1];
float sample_rate = std::stof(argv[2]);
float threshold = std::stof(argv[3]);
//Load Model
std::string model_path = "../../src/silero_vad/data/silero_vad.jit";
silero::VadIterator vad(model_path);
vad.threshold=threshold; //(Default:0.5)
vad.sample_rate=sample_rate; //16000Hz,8000Hz. (Default:16000)
vad.print_as_samples=true; //if true, it prints time-stamp with samples. otherwise, in seconds
//(Default:false)
vad.SetVariables();
// Read wav
wav::WavReader wav_reader(wav_path);
std::vector<float> input_wav(wav_reader.num_samples());
for (int i = 0; i < wav_reader.num_samples(); i++)
{
input_wav[i] = static_cast<float>(*(wav_reader.data() + i));
}
vad.SpeechProbs(input_wav);
std::vector<silero::SpeechSegment> speeches = vad.GetSpeechTimestamps();
for(const auto& speech : speeches){
if(vad.print_as_samples){
std::cout<<"{'start': "<<static_cast<int>(speech.start)<<", 'end': "<<static_cast<int>(speech.end)<<"}"<<std::endl;
}
else{
std::cout<<"{'start': "<<speech.start<<", 'end': "<<speech.end<<"}"<<std::endl;
}
}
return 0;
}

Binary file not shown.

View File

@@ -1,285 +0,0 @@
//Author : Nathan Lee
//Created On : 2024-11-18
//Description : silero 5.1 system for torch-script(c++).
//Version : 1.0
#include "silero_torch.h"
namespace silero {
VadIterator::VadIterator(const std::string &model_path, float threshold, int sample_rate, int window_size_ms, int speech_pad_ms, int min_silence_duration_ms, int min_speech_duration_ms, int max_duration_merge_ms, bool print_as_samples)
:sample_rate(sample_rate), threshold(threshold), window_size_ms(window_size_ms), speech_pad_ms(speech_pad_ms), min_silence_duration_ms(min_silence_duration_ms), min_speech_duration_ms(min_speech_duration_ms), max_duration_merge_ms(max_duration_merge_ms), print_as_samples(print_as_samples)
{
init_torch_model(model_path);
//init_engine(window_size_ms);
}
VadIterator::~VadIterator(){
}
void VadIterator::SpeechProbs(std::vector<float>& input_wav){
// Set the sample rate (must match the model's expected sample rate)
// Process the waveform in chunks of 512 samples
int num_samples = input_wav.size();
int num_chunks = num_samples / window_size_samples;
int remainder_samples = num_samples % window_size_samples;
total_sample_size += num_samples;
torch::Tensor output;
std::vector<torch::Tensor> chunks;
for (int i = 0; i < num_chunks; i++) {
float* chunk_start = input_wav.data() + i *window_size_samples;
torch::Tensor chunk = torch::from_blob(chunk_start, {1,window_size_samples}, torch::kFloat32);
//std::cout<<"chunk size : "<<chunk.sizes()<<std::endl;
chunks.push_back(chunk);
if(i==num_chunks-1 && remainder_samples>0){//마지막 chunk && 나머지가 존재
int remaining_samples = num_samples - num_chunks * window_size_samples;
//std::cout<<"Remainder size : "<<remaining_samples;
float* chunk_start_remainder = input_wav.data() + num_chunks *window_size_samples;
torch::Tensor remainder_chunk = torch::from_blob(chunk_start_remainder, {1,remaining_samples},
torch::kFloat32);
// Pad the remainder chunk to match window_size_samples
torch::Tensor padded_chunk = torch::cat({remainder_chunk, torch::zeros({1, window_size_samples
- remaining_samples}, torch::kFloat32)}, 1);
//std::cout<<", padded_chunk size : "<<padded_chunk.size(1)<<std::endl;
chunks.push_back(padded_chunk);
}
}
if (!chunks.empty()) {
#ifdef USE_BATCH
torch::Tensor batched_chunks = torch::stack(chunks); // Stack all chunks into a single tensor
//batched_chunks = batched_chunks.squeeze(1);
batched_chunks = torch::cat({batched_chunks.squeeze(1)});
#ifdef USE_GPU
batched_chunks = batched_chunks.to(at::kCUDA); // Move the entire batch to GPU once
#endif
// Prepare input for model
std::vector<torch::jit::IValue> inputs;
inputs.push_back(batched_chunks); // Batch of chunks
inputs.push_back(sample_rate); // Assuming sample_rate is a valid input for the model
// Run inference on the batch
torch::NoGradGuard no_grad;
torch::Tensor output = model.forward(inputs).toTensor();
#ifdef USE_GPU
output = output.to(at::kCPU); // Move the output back to CPU once
#endif
// Collect output probabilities
for (int i = 0; i < chunks.size(); i++) {
float output_f = output[i].item<float>();
outputs_prob.push_back(output_f);
//std::cout << "Chunk " << i << " prob: " << output_f<< "\n";
}
#else
std::vector<torch::Tensor> outputs;
torch::Tensor batched_chunks = torch::stack(chunks);
#ifdef USE_GPU
batched_chunks = batched_chunks.to(at::kCUDA);
#endif
for (int i = 0; i < chunks.size(); i++) {
torch::NoGradGuard no_grad;
std::vector<torch::jit::IValue> inputs;
inputs.push_back(batched_chunks[i]);
inputs.push_back(sample_rate);
torch::Tensor output = model.forward(inputs).toTensor();
outputs.push_back(output);
}
torch::Tensor all_outputs = torch::stack(outputs);
#ifdef USE_GPU
all_outputs = all_outputs.to(at::kCPU);
#endif
for (int i = 0; i < chunks.size(); i++) {
float output_f = all_outputs[i].item<float>();
outputs_prob.push_back(output_f);
}
#endif
}
}
std::vector<SpeechSegment> VadIterator::GetSpeechTimestamps() {
std::vector<SpeechSegment> speeches = DoVad();
#ifdef USE_BATCH
//When you use BATCH inference. You would better use 'mergeSpeeches' function to arrage time stamp.
//It could be better get reasonable output because of distorted probs.
duration_merge_samples = sample_rate * max_duration_merge_ms / 1000;
std::vector<SpeechSegment> speeches_merge = mergeSpeeches(speeches, duration_merge_samples);
if(!print_as_samples){
for (auto& speech : speeches_merge) { //samples to second
speech.start /= sample_rate;
speech.end /= sample_rate;
}
}
return speeches_merge;
#else
if(!print_as_samples){
for (auto& speech : speeches) { //samples to second
speech.start /= sample_rate;
speech.end /= sample_rate;
}
}
return speeches;
#endif
}
void VadIterator::SetVariables(){
init_engine(window_size_ms);
}
void VadIterator::init_engine(int window_size_ms) {
min_silence_samples = sample_rate * min_silence_duration_ms / 1000;
speech_pad_samples = sample_rate * speech_pad_ms / 1000;
window_size_samples = sample_rate / 1000 * window_size_ms;
min_speech_samples = sample_rate * min_speech_duration_ms / 1000;
}
void VadIterator::init_torch_model(const std::string& model_path) {
at::set_num_threads(1);
model = torch::jit::load(model_path);
#ifdef USE_GPU
if (!torch::cuda::is_available()) {
std::cout<<"CUDA is not available! Please check your GPU settings"<<std::endl;
throw std::runtime_error("CUDA is not available!");
model.to(at::Device(at::kCPU));
} else {
std::cout<<"CUDA available! Running on '0'th GPU"<<std::endl;
model.to(at::Device(at::kCUDA, 0)); //select 0'th machine
}
#endif
model.eval();
torch::NoGradGuard no_grad;
std::cout << "Model loaded successfully"<<std::endl;
}
void VadIterator::reset_states() {
triggered = false;
current_sample = 0;
temp_end = 0;
outputs_prob.clear();
model.run_method("reset_states");
total_sample_size = 0;
}
std::vector<SpeechSegment> VadIterator::DoVad() {
std::vector<SpeechSegment> speeches;
for (size_t i = 0; i < outputs_prob.size(); ++i) {
float speech_prob = outputs_prob[i];
//std::cout << speech_prob << std::endl;
//std::cout << "Chunk " << i << " Prob: " << speech_prob << "\n";
//std::cout << speech_prob << " ";
current_sample += window_size_samples;
if (speech_prob >= threshold && temp_end != 0) {
temp_end = 0;
}
if (speech_prob >= threshold && !triggered) {
triggered = true;
SpeechSegment segment;
segment.start = std::max(static_cast<int>(0), current_sample - speech_pad_samples - window_size_samples);
speeches.push_back(segment);
continue;
}
if (speech_prob < threshold - 0.15f && triggered) {
if (temp_end == 0) {
temp_end = current_sample;
}
if (current_sample - temp_end < min_silence_samples) {
continue;
} else {
SpeechSegment& segment = speeches.back();
segment.end = temp_end + speech_pad_samples - window_size_samples;
temp_end = 0;
triggered = false;
}
}
}
if (triggered) { //만약 낮은 확률을 보이다가 마지막프레임 prbos만 딱 확률이 높게 나오면 위에서 triggerd = true 메핑과 동시에 segment start가 돼서 문제가 될것 같은데? start = end 같은값? 후처리가 있으니 문제가 없으려나?
std::cout<<"when last triggered is keep working until last Probs"<<std::endl;
SpeechSegment& segment = speeches.back();
segment.end = total_sample_size; // 현재 샘플을 마지막 구간의 종료 시간으로 설정
triggered = false; // VAD 상태 초기화
}
speeches.erase(
std::remove_if(
speeches.begin(),
speeches.end(),
[this](const SpeechSegment& speech) {
return ((speech.end - this->speech_pad_samples) - (speech.start + this->speech_pad_samples) < min_speech_samples);
//min_speech_samples is 4000samples(0.25sec)
//여기서 포인트!! 계산 할때는 start,end sample에'speech_pad_samples' 사이즈를 추가한후 길이를 측정함.
}
),
speeches.end()
);
//std::cout<<std::endl;
//std::cout<<"outputs_prob.size : "<<outputs_prob.size()<<std::endl;
reset_states();
return speeches;
}
std::vector<SpeechSegment> VadIterator::mergeSpeeches(const std::vector<SpeechSegment>& speeches, int duration_merge_samples) {
std::vector<SpeechSegment> mergedSpeeches;
if (speeches.empty()) {
return mergedSpeeches; // 빈 벡터 반환
}
// 첫 번째 구간으로 초기화
SpeechSegment currentSegment = speeches[0];
for (size_t i = 1; i < speeches.size(); ++i) { //첫번째 start,end 정보 건너뛰기. 그래서 i=1부터
// 두 구간의 차이가 threshold(duration_merge_samples)보다 작은 경우, 합침
if (speeches[i].start - currentSegment.end < duration_merge_samples) {
// 현재 구간의 끝점을 업데이트
currentSegment.end = speeches[i].end;
} else {
// 차이가 threshold(duration_merge_samples) 이상이면 현재 구간을 저장하고 새로운 구간 시작
mergedSpeeches.push_back(currentSegment);
currentSegment = speeches[i];
}
}
// 마지막 구간 추가
mergedSpeeches.push_back(currentSegment);
return mergedSpeeches;
}
}

View File

@@ -1,75 +0,0 @@
//Author : Nathan Lee
//Created On : 2024-11-18
//Description : silero 5.1 system for torch-script(c++).
//Version : 1.0
#ifndef SILERO_TORCH_H
#define SILERO_TORCH_H
#include <string>
#include <memory>
#include <stdexcept>
#include <iostream>
#include <memory>
#include <vector>
#include <fstream>
#include <chrono>
#include <torch/torch.h>
#include <torch/script.h>
namespace silero{
struct SpeechSegment{
int start;
int end;
};
class VadIterator{
public:
VadIterator(const std::string &model_path, float threshold = 0.5, int sample_rate = 16000,
int window_size_ms = 32, int speech_pad_ms = 30, int min_silence_duration_ms = 100,
int min_speech_duration_ms = 250, int max_duration_merge_ms = 300, bool print_as_samples = false);
~VadIterator();
void SpeechProbs(std::vector<float>& input_wav);
std::vector<silero::SpeechSegment> GetSpeechTimestamps();
void SetVariables();
float threshold;
int sample_rate;
int window_size_ms;
int min_speech_duration_ms;
int max_duration_merge_ms;
bool print_as_samples;
private:
torch::jit::script::Module model;
std::vector<float> outputs_prob;
int min_silence_samples;
int min_speech_samples;
int speech_pad_samples;
int window_size_samples;
int duration_merge_samples;
int current_sample = 0;
int total_sample_size=0;
int min_silence_duration_ms;
int speech_pad_ms;
bool triggered = false;
int temp_end = 0;
void init_engine(int window_size_ms);
void init_torch_model(const std::string& model_path);
void reset_states();
std::vector<SpeechSegment> DoVad();
std::vector<SpeechSegment> mergeSpeeches(const std::vector<SpeechSegment>& speeches, int duration_merge_samples);
};
}
#endif // SILERO_TORCH_H

View File

@@ -1,235 +0,0 @@
// Copyright (c) 2016 Personal (Binbin Zhang)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef FRONTEND_WAV_H_
#define FRONTEND_WAV_H_
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
// #include "utils/log.h"
namespace wav {
struct WavHeader {
char riff[4]; // "riff"
unsigned int size;
char wav[4]; // "WAVE"
char fmt[4]; // "fmt "
unsigned int fmt_size;
uint16_t format;
uint16_t channels;
unsigned int sample_rate;
unsigned int bytes_per_second;
uint16_t block_size;
uint16_t bit;
char data[4]; // "data"
unsigned int data_size;
};
class WavReader {
public:
WavReader() : data_(nullptr) {}
explicit WavReader(const std::string& filename) { Open(filename); }
bool Open(const std::string& filename) {
FILE* fp = fopen(filename.c_str(), "rb"); //文件读取
if (NULL == fp) {
std::cout << "Error in read " << filename;
return false;
}
WavHeader header;
fread(&header, 1, sizeof(header), fp);
if (header.fmt_size < 16) {
printf("WaveData: expect PCM format data "
"to have fmt chunk of at least size 16.\n");
return false;
} else if (header.fmt_size > 16) {
int offset = 44 - 8 + header.fmt_size - 16;
fseek(fp, offset, SEEK_SET);
fread(header.data, 8, sizeof(char), fp);
}
// check "riff" "WAVE" "fmt " "data"
// Skip any sub-chunks between "fmt" and "data". Usually there will
// be a single "fact" sub chunk, but on Windows there can also be a
// "list" sub chunk.
while (0 != strncmp(header.data, "data", 4)) {
// We will just ignore the data in these chunks.
fseek(fp, header.data_size, SEEK_CUR);
// read next sub chunk
fread(header.data, 8, sizeof(char), fp);
}
if (header.data_size == 0) {
int offset = ftell(fp);
fseek(fp, 0, SEEK_END);
header.data_size = ftell(fp) - offset;
fseek(fp, offset, SEEK_SET);
}
num_channel_ = header.channels;
sample_rate_ = header.sample_rate;
bits_per_sample_ = header.bit;
int num_data = header.data_size / (bits_per_sample_ / 8);
data_ = new float[num_data]; // Create 1-dim array
num_samples_ = num_data / num_channel_;
std::cout << "num_channel_ :" << num_channel_ << std::endl;
std::cout << "sample_rate_ :" << sample_rate_ << std::endl;
std::cout << "bits_per_sample_:" << bits_per_sample_ << std::endl;
std::cout << "num_samples :" << num_data << std::endl;
std::cout << "num_data_size :" << header.data_size << std::endl;
switch (bits_per_sample_) {
case 8: {
char sample;
for (int i = 0; i < num_data; ++i) {
fread(&sample, 1, sizeof(char), fp);
data_[i] = static_cast<float>(sample) / 32768;
}
break;
}
case 16: {
int16_t sample;
for (int i = 0; i < num_data; ++i) {
fread(&sample, 1, sizeof(int16_t), fp);
data_[i] = static_cast<float>(sample) / 32768;
}
break;
}
case 32:
{
if (header.format == 1) //S32
{
int sample;
for (int i = 0; i < num_data; ++i) {
fread(&sample, 1, sizeof(int), fp);
data_[i] = static_cast<float>(sample) / 32768;
}
}
else if (header.format == 3) // IEEE-float
{
float sample;
for (int i = 0; i < num_data; ++i) {
fread(&sample, 1, sizeof(float), fp);
data_[i] = static_cast<float>(sample);
}
}
else {
printf("unsupported quantization bits\n");
}
break;
}
default:
printf("unsupported quantization bits\n");
break;
}
fclose(fp);
return true;
}
int num_channel() const { return num_channel_; }
int sample_rate() const { return sample_rate_; }
int bits_per_sample() const { return bits_per_sample_; }
int num_samples() const { return num_samples_; }
~WavReader() {
delete[] data_;
}
const float* data() const { return data_; }
private:
int num_channel_;
int sample_rate_;
int bits_per_sample_;
int num_samples_; // sample points per channel
float* data_;
};
class WavWriter {
public:
WavWriter(const float* data, int num_samples, int num_channel,
int sample_rate, int bits_per_sample)
: data_(data),
num_samples_(num_samples),
num_channel_(num_channel),
sample_rate_(sample_rate),
bits_per_sample_(bits_per_sample) {}
void Write(const std::string& filename) {
FILE* fp = fopen(filename.c_str(), "w");
// init char 'riff' 'WAVE' 'fmt ' 'data'
WavHeader header;
char wav_header[44] = {0x52, 0x49, 0x46, 0x46, 0x00, 0x00, 0x00, 0x00, 0x57,
0x41, 0x56, 0x45, 0x66, 0x6d, 0x74, 0x20, 0x10, 0x00,
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x64, 0x61, 0x74, 0x61, 0x00, 0x00, 0x00, 0x00};
memcpy(&header, wav_header, sizeof(header));
header.channels = num_channel_;
header.bit = bits_per_sample_;
header.sample_rate = sample_rate_;
header.data_size = num_samples_ * num_channel_ * (bits_per_sample_ / 8);
header.size = sizeof(header) - 8 + header.data_size;
header.bytes_per_second =
sample_rate_ * num_channel_ * (bits_per_sample_ / 8);
header.block_size = num_channel_ * (bits_per_sample_ / 8);
fwrite(&header, 1, sizeof(header), fp);
for (int i = 0; i < num_samples_; ++i) {
for (int j = 0; j < num_channel_; ++j) {
switch (bits_per_sample_) {
case 8: {
char sample = static_cast<char>(data_[i * num_channel_ + j]);
fwrite(&sample, 1, sizeof(sample), fp);
break;
}
case 16: {
int16_t sample = static_cast<int16_t>(data_[i * num_channel_ + j]);
fwrite(&sample, 1, sizeof(sample), fp);
break;
}
case 32: {
int sample = static_cast<int>(data_[i * num_channel_ + j]);
fwrite(&sample, 1, sizeof(sample), fp);
break;
}
}
}
}
fclose(fp);
}
private:
const float* data_;
int num_samples_; // total float points in data_
int num_channel_;
int sample_rate_;
int bits_per_sample_;
};
} // namespace wenet
#endif // FRONTEND_WAV_H_

View File

@@ -1,13 +0,0 @@
# Haskell example
To run the example, make sure you put an ``example.wav`` in this directory, and then run the following:
```bash
stack run
```
The ``example.wav`` file must have the following requirements:
- Must be 16khz sample rate.
- Must be mono channel.
- Must be 16-bit audio.
This uses the [silero-vad](https://hackage.haskell.org/package/silero-vad) package, a haskell implementation based on the C# example.

View File

@@ -1,22 +0,0 @@
module Main (main) where
import qualified Data.Vector.Storable as Vector
import Data.WAVE
import Data.Function
import Silero
main :: IO ()
main =
withModel $ \model -> do
wav <- getWAVEFile "example.wav"
let samples =
concat (waveSamples wav)
& Vector.fromList
& Vector.map (realToFrac . sampleToDouble)
let vad =
(defaultVad model)
{ startThreshold = 0.5
, endThreshold = 0.35
}
segments <- detectSegments vad samples
print segments

View File

@@ -1,23 +0,0 @@
cabal-version: 1.12
-- This file has been generated from package.yaml by hpack version 0.37.0.
--
-- see: https://github.com/sol/hpack
name: example
version: 0.1.0.0
build-type: Simple
executable example-exe
main-is: Main.hs
other-modules:
Paths_example
hs-source-dirs:
app
ghc-options: -Wall -Wcompat -Widentities -Wincomplete-record-updates -Wincomplete-uni-patterns -Wmissing-export-lists -Wmissing-home-modules -Wpartial-fields -Wredundant-constraints -threaded -rtsopts -with-rtsopts=-N
build-depends:
WAVE
, base >=4.7 && <5
, silero-vad
, vector
default-language: Haskell2010

View File

@@ -1,28 +0,0 @@
name: example
version: 0.1.0.0
dependencies:
- base >= 4.7 && < 5
- silero-vad
- WAVE
- vector
ghc-options:
- -Wall
- -Wcompat
- -Widentities
- -Wincomplete-record-updates
- -Wincomplete-uni-patterns
- -Wmissing-export-lists
- -Wmissing-home-modules
- -Wpartial-fields
- -Wredundant-constraints
executables:
example-exe:
main: Main.hs
source-dirs: app
ghc-options:
- -threaded
- -rtsopts
- -with-rtsopts=-N

View File

@@ -1,11 +0,0 @@
snapshot:
url: https://raw.githubusercontent.com/commercialhaskell/stackage-snapshots/master/lts/20/26.yaml
packages:
- .
extra-deps:
- silero-vad-0.1.0.4@sha256:2bff95be978a2782915b250edc795760d4cf76838e37bb7d4a965dc32566eb0f,5476
- WAVE-0.1.6@sha256:f744ff68f5e3a0d1f84fab373ea35970659085d213aef20860357512d0458c5c,1016
- derive-storable-0.3.1.0@sha256:bd1c51c155a00e2be18325d553d6764dd678904a85647d6ba952af998e70aa59,2313
- vector-0.13.2.0@sha256:98f5cb3080a3487527476e3c272dcadaba1376539f2aa0646f2f19b3af6b2f67,8481

View File

@@ -1,41 +0,0 @@
# This file was autogenerated by Stack.
# You should not edit this file by hand.
# For more information, please see the documentation at:
# https://docs.haskellstack.org/en/stable/lock_files
packages:
- completed:
hackage: silero-vad-0.1.0.4@sha256:2bff95be978a2782915b250edc795760d4cf76838e37bb7d4a965dc32566eb0f,5476
pantry-tree:
sha256: a62e813f978d32c87769796fded981d25fcf2875bb2afdf60ed6279f931ccd7f
size: 1391
original:
hackage: silero-vad-0.1.0.4@sha256:2bff95be978a2782915b250edc795760d4cf76838e37bb7d4a965dc32566eb0f,5476
- completed:
hackage: WAVE-0.1.6@sha256:f744ff68f5e3a0d1f84fab373ea35970659085d213aef20860357512d0458c5c,1016
pantry-tree:
sha256: ee5ccd70fa7fe6ffc360ebd762b2e3f44ae10406aa27f3842d55b8cbd1a19498
size: 405
original:
hackage: WAVE-0.1.6@sha256:f744ff68f5e3a0d1f84fab373ea35970659085d213aef20860357512d0458c5c,1016
- completed:
hackage: derive-storable-0.3.1.0@sha256:bd1c51c155a00e2be18325d553d6764dd678904a85647d6ba952af998e70aa59,2313
pantry-tree:
sha256: 48e35a72d1bb593173890616c8d7efd636a650a306a50bb3e1513e679939d27e
size: 902
original:
hackage: derive-storable-0.3.1.0@sha256:bd1c51c155a00e2be18325d553d6764dd678904a85647d6ba952af998e70aa59,2313
- completed:
hackage: vector-0.13.2.0@sha256:98f5cb3080a3487527476e3c272dcadaba1376539f2aa0646f2f19b3af6b2f67,8481
pantry-tree:
sha256: 2176fd677a02a4c47337f7dca5aeca2745dbb821a6ea5c7099b3a991ecd7f4f0
size: 4478
original:
hackage: vector-0.13.2.0@sha256:98f5cb3080a3487527476e3c272dcadaba1376539f2aa0646f2f19b3af6b2f67,8481
snapshots:
- completed:
sha256: 5a59b2a405b3aba3c00188453be172b85893cab8ebc352b1ef58b0eae5d248a2
size: 650475
url: https://raw.githubusercontent.com/commercialhaskell/stackage-snapshots/master/lts/20/26.yaml
original:
url: https://raw.githubusercontent.com/commercialhaskell/stackage-snapshots/master/lts/20/26.yaml

View File

@@ -1,31 +1,30 @@
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>java-example</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<groupId>org.example</groupId>
<artifactId>java-example</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<name>sliero-vad-example</name>
<url>http://maven.apache.org</url>
<name>sliero-vad-example</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/com.microsoft.onnxruntime/onnxruntime -->
<dependency>
<groupId>com.microsoft.onnxruntime</groupId>
<artifactId>onnxruntime</artifactId>
<version>1.23.1</version>
</dependency>
</dependencies>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>com.microsoft.onnxruntime</groupId>
<artifactId>onnxruntime</artifactId>
<version>1.16.0-rc1</version>
</dependency>
</dependencies>
</project>

View File

@@ -2,263 +2,68 @@ package org.example;
import ai.onnxruntime.OrtException;
import javax.sound.sampled.*;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* Silero VAD Java Example
* Voice Activity Detection using ONNX model
*
* @author VvvvvGH
*/
public class App {
// ONNX model path - using the model file from the project
private static final String MODEL_PATH = "../../src/silero_vad/data/silero_vad.onnx";
// Test audio file path
private static final String AUDIO_FILE_PATH = "../../en_example.wav";
// Sampling rate
private static final String MODEL_PATH = "src/main/resources/silero_vad.onnx";
private static final int SAMPLE_RATE = 16000;
// Speech threshold (consistent with Python default)
private static final float THRESHOLD = 0.5f;
// Negative threshold (used to determine speech end)
private static final float NEG_THRESHOLD = 0.35f; // threshold - 0.15
// Minimum speech duration (milliseconds)
private static final int MIN_SPEECH_DURATION_MS = 250;
// Minimum silence duration (milliseconds)
private static final int MIN_SILENCE_DURATION_MS = 100;
// Speech padding (milliseconds)
private static final int SPEECH_PAD_MS = 30;
// Window size (samples) - 512 samples for 16kHz
private static final int WINDOW_SIZE_SAMPLES = 512;
private static final float START_THRESHOLD = 0.6f;
private static final float END_THRESHOLD = 0.45f;
private static final int MIN_SILENCE_DURATION_MS = 600;
private static final int SPEECH_PAD_MS = 500;
private static final int WINDOW_SIZE_SAMPLES = 2048;
public static void main(String[] args) {
System.out.println("=".repeat(60));
System.out.println("Silero VAD Java ONNX Example");
System.out.println("=".repeat(60));
// Load ONNX model
SlieroVadOnnxModel model;
// Initialize the Voice Activity Detector
SlieroVadDetector vadDetector;
try {
System.out.println("Loading ONNX model: " + MODEL_PATH);
model = new SlieroVadOnnxModel(MODEL_PATH);
System.out.println("Model loaded successfully!");
vadDetector = new SlieroVadDetector(MODEL_PATH, START_THRESHOLD, END_THRESHOLD, SAMPLE_RATE, MIN_SILENCE_DURATION_MS, SPEECH_PAD_MS);
} catch (OrtException e) {
System.err.println("Failed to load model: " + e.getMessage());
e.printStackTrace();
System.err.println("Error initializing the VAD detector: " + e.getMessage());
return;
}
// Read WAV file
float[] audioData;
// Set audio format
AudioFormat format = new AudioFormat(SAMPLE_RATE, 16, 1, true, false);
DataLine.Info info = new DataLine.Info(TargetDataLine.class, format);
// Get the target data line and open it with the specified format
TargetDataLine targetDataLine;
try {
System.out.println("\nReading audio file: " + AUDIO_FILE_PATH);
audioData = readWavFileAsFloatArray(AUDIO_FILE_PATH);
System.out.println("Audio file read successfully, samples: " + audioData.length);
System.out.println("Audio duration: " + String.format("%.2f", (audioData.length / (float) SAMPLE_RATE)) + " seconds");
} catch (Exception e) {
System.err.println("Failed to read audio file: " + e.getMessage());
e.printStackTrace();
targetDataLine = (TargetDataLine) AudioSystem.getLine(info);
targetDataLine.open(format);
targetDataLine.start();
} catch (LineUnavailableException e) {
System.err.println("Error opening target data line: " + e.getMessage());
return;
}
// Get speech timestamps (batch mode, consistent with Python's get_speech_timestamps)
System.out.println("\nDetecting speech segments...");
List<Map<String, Integer>> speechTimestamps;
try {
speechTimestamps = getSpeechTimestamps(
audioData,
model,
THRESHOLD,
SAMPLE_RATE,
MIN_SPEECH_DURATION_MS,
MIN_SILENCE_DURATION_MS,
SPEECH_PAD_MS,
NEG_THRESHOLD
);
} catch (OrtException e) {
System.err.println("Failed to detect speech timestamps: " + e.getMessage());
e.printStackTrace();
return;
}
// Main loop to continuously read data and apply Voice Activity Detection
while (targetDataLine.isOpen()) {
byte[] data = new byte[WINDOW_SIZE_SAMPLES];
// Output detection results
System.out.println("\nDetected speech timestamps (in samples):");
for (Map<String, Integer> timestamp : speechTimestamps) {
System.out.println(timestamp);
}
// Output summary
System.out.println("\n" + "=".repeat(60));
System.out.println("Detection completed!");
System.out.println("Total detected " + speechTimestamps.size() + " speech segments");
System.out.println("=".repeat(60));
// Close model
try {
model.close();
} catch (OrtException e) {
System.err.println("Error closing model: " + e.getMessage());
}
}
/**
* Get speech timestamps
* Implements the same logic as Python's get_speech_timestamps
*
* @param audio Audio data (float array)
* @param model ONNX model
* @param threshold Speech threshold
* @param samplingRate Sampling rate
* @param minSpeechDurationMs Minimum speech duration (milliseconds)
* @param minSilenceDurationMs Minimum silence duration (milliseconds)
* @param speechPadMs Speech padding (milliseconds)
* @param negThreshold Negative threshold (used to determine speech end)
* @return List of speech timestamps
*/
private static List<Map<String, Integer>> getSpeechTimestamps(
float[] audio,
SlieroVadOnnxModel model,
float threshold,
int samplingRate,
int minSpeechDurationMs,
int minSilenceDurationMs,
int speechPadMs,
float negThreshold) throws OrtException {
// Reset model states
model.resetStates();
// Calculate parameters
int minSpeechSamples = samplingRate * minSpeechDurationMs / 1000;
int speechPadSamples = samplingRate * speechPadMs / 1000;
int minSilenceSamples = samplingRate * minSilenceDurationMs / 1000;
int windowSizeSamples = samplingRate == 16000 ? 512 : 256;
int audioLengthSamples = audio.length;
// Calculate speech probabilities for all audio chunks
List<Float> speechProbs = new ArrayList<>();
for (int currentStart = 0; currentStart < audioLengthSamples; currentStart += windowSizeSamples) {
float[] chunk = new float[windowSizeSamples];
int chunkLength = Math.min(windowSizeSamples, audioLengthSamples - currentStart);
System.arraycopy(audio, currentStart, chunk, 0, chunkLength);
// Pad with zeros if chunk is shorter than window size
if (chunkLength < windowSizeSamples) {
for (int i = chunkLength; i < windowSizeSamples; i++) {
chunk[i] = 0.0f;
}
}
float speechProb = model.call(new float[][]{chunk}, samplingRate)[0];
speechProbs.add(speechProb);
}
// Detect speech segments using the same algorithm as Python
boolean triggered = false;
List<Map<String, Integer>> speeches = new ArrayList<>();
Map<String, Integer> currentSpeech = null;
int tempEnd = 0;
for (int i = 0; i < speechProbs.size(); i++) {
float speechProb = speechProbs.get(i);
// Reset temporary end if speech probability exceeds threshold
if (speechProb >= threshold && tempEnd != 0) {
tempEnd = 0;
}
// Detect speech start
if (speechProb >= threshold && !triggered) {
triggered = true;
currentSpeech = new HashMap<>();
currentSpeech.put("start", windowSizeSamples * i);
int numBytesRead = targetDataLine.read(data, 0, data.length);
if (numBytesRead <= 0) {
System.err.println("Error reading data from target data line.");
continue;
}
// Detect speech end
if (speechProb < negThreshold && triggered) {
if (tempEnd == 0) {
tempEnd = windowSizeSamples * i;
}
if (windowSizeSamples * i - tempEnd < minSilenceSamples) {
continue;
} else {
currentSpeech.put("end", tempEnd);
if (currentSpeech.get("end") - currentSpeech.get("start") > minSpeechSamples) {
speeches.add(currentSpeech);
}
currentSpeech = null;
tempEnd = 0;
triggered = false;
}
}
}
// Handle the last speech segment
if (currentSpeech != null &&
(audioLengthSamples - currentSpeech.get("start")) > minSpeechSamples) {
currentSpeech.put("end", audioLengthSamples);
speeches.add(currentSpeech);
}
// Add speech padding - same logic as Python
for (int i = 0; i < speeches.size(); i++) {
Map<String, Integer> speech = speeches.get(i);
if (i == 0) {
speech.put("start", Math.max(0, speech.get("start") - speechPadSamples));
}
if (i != speeches.size() - 1) {
int silenceDuration = speeches.get(i + 1).get("start") - speech.get("end");
if (silenceDuration < 2 * speechPadSamples) {
speech.put("end", speech.get("end") + silenceDuration / 2);
speeches.get(i + 1).put("start",
Math.max(0, speeches.get(i + 1).get("start") - silenceDuration / 2));
} else {
speech.put("end", Math.min(audioLengthSamples, speech.get("end") + speechPadSamples));
speeches.get(i + 1).put("start",
Math.max(0, speeches.get(i + 1).get("start") - speechPadSamples));
}
} else {
speech.put("end", Math.min(audioLengthSamples, speech.get("end") + speechPadSamples));
}
}
return speeches;
}
/**
* Read WAV file and return as float array
*
* @param filePath WAV file path
* @return Audio data as float array (normalized to -1.0 to 1.0)
*/
private static float[] readWavFileAsFloatArray(String filePath)
throws UnsupportedAudioFileException, IOException {
File audioFile = new File(filePath);
AudioInputStream audioStream = AudioSystem.getAudioInputStream(audioFile);
// Get audio format information
AudioFormat format = audioStream.getFormat();
System.out.println("Audio format: " + format);
// Read all audio data
byte[] audioBytes = audioStream.readAllBytes();
audioStream.close();
// Convert to float array
float[] audioData = new float[audioBytes.length / 2];
for (int i = 0; i < audioData.length; i++) {
// 16-bit PCM: two bytes per sample (little-endian)
short sample = (short) ((audioBytes[i * 2] & 0xff) | (audioBytes[i * 2 + 1] << 8));
audioData[i] = sample / 32768.0f; // Normalize to -1.0 to 1.0
}
return audioData;
}
// Apply the Voice Activity Detector to the data and get the result
Map<String, Double> detectResult;
try {
detectResult = vadDetector.apply(data, true);
} catch (Exception e) {
System.err.println("Error applying VAD detector: " + e.getMessage());
continue;
}
if (!detectResult.isEmpty()) {
System.out.println(detectResult);
}
}
// Close the target data line to release audio resources
targetDataLine.close();
}
}

View File

@@ -8,30 +8,25 @@ import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
/**
* Silero VAD Detector
* Real-time voice activity detection
*
* @author VvvvvGH
*/
public class SlieroVadDetector {
// ONNX model for speech processing
// OnnxModel model used for speech processing
private final SlieroVadOnnxModel model;
// Speech start threshold
// Threshold for speech start
private final float startThreshold;
// Speech end threshold
// Threshold for speech end
private final float endThreshold;
// Sampling rate
private final int samplingRate;
// Minimum silence samples to determine speech end
// Minimum number of silence samples to determine the end threshold of speech
private final float minSilenceSamples;
// Speech padding samples for calculating speech boundaries
// Additional number of samples for speech start or end to calculate speech start or end time
private final float speechPadSamples;
// Triggered state (whether speech is being detected)
// Whether in the triggered state (i.e. whether speech is being detected)
private boolean triggered;
// Temporary speech end sample position
// Temporarily stored number of speech end samples
private int tempEnd;
// Current sample position
// Number of samples currently being processed
private int currentSample;
@@ -41,25 +36,23 @@ public class SlieroVadDetector {
int samplingRate,
int minSilenceDurationMs,
int speechPadMs) throws OrtException {
// Validate sampling rate
// Check if the sampling rate is 8000 or 16000, if not, throw an exception
if (samplingRate != 8000 && samplingRate != 16000) {
throw new IllegalArgumentException("Does not support sampling rates other than [8000, 16000]");
throw new IllegalArgumentException("does not support sampling rates other than [8000, 16000]");
}
// Initialize parameters
// Initialize the parameters
this.model = new SlieroVadOnnxModel(modelPath);
this.startThreshold = startThreshold;
this.endThreshold = endThreshold;
this.samplingRate = samplingRate;
this.minSilenceSamples = samplingRate * minSilenceDurationMs / 1000f;
this.speechPadSamples = samplingRate * speechPadMs / 1000f;
// Reset state
// Reset the state
reset();
}
/**
* Reset detector state
*/
// Method to reset the state, including the model state, trigger state, temporary end time, and current sample count
public void reset() {
model.resetStates();
triggered = false;
@@ -67,27 +60,21 @@ public class SlieroVadDetector {
currentSample = 0;
}
/**
* Process audio data and detect speech events
*
* @param data Audio data as byte array
* @param returnSeconds Whether to return timestamps in seconds
* @return Speech event (start or end) or empty map if no event
*/
// apply method for processing the audio array, returning possible speech start or end times
public Map<String, Double> apply(byte[] data, boolean returnSeconds) {
// Convert byte array to float array
// Convert the byte array to a float array
float[] audioData = new float[data.length / 2];
for (int i = 0; i < audioData.length; i++) {
audioData[i] = ((data[i * 2] & 0xff) | (data[i * 2 + 1] << 8)) / 32767.0f;
}
// Get window size from audio data length
// Get the length of the audio array as the window size
int windowSizeSamples = audioData.length;
// Update current sample position
// Update the current sample count
currentSample += windowSizeSamples;
// Get speech probability from model
// Call the model to get the prediction probability of speech
float speechProb = 0;
try {
speechProb = model.call(new float[][]{audioData}, samplingRate)[0];
@@ -95,18 +82,19 @@ public class SlieroVadDetector {
throw new RuntimeException(e);
}
// Reset temporary end if speech probability exceeds threshold
// If the speech probability is greater than the threshold and the temporary end time is not 0, reset the temporary end time
// This indicates that the speech duration has exceeded expectations and needs to recalculate the end time
if (speechProb >= startThreshold && tempEnd != 0) {
tempEnd = 0;
}
// Detect speech start
// If the speech probability is greater than the threshold and not in the triggered state, set to triggered state and calculate the speech start time
if (speechProb >= startThreshold && !triggered) {
triggered = true;
int speechStart = (int) (currentSample - speechPadSamples);
speechStart = Math.max(speechStart, 0);
Map<String, Double> result = new HashMap<>();
// Return in seconds or samples based on returnSeconds parameter
// Decide whether to return the result in seconds or sample count based on the returnSeconds parameter
if (returnSeconds) {
double speechStartSeconds = speechStart / (double) samplingRate;
double roundedSpeechStart = BigDecimal.valueOf(speechStartSeconds).setScale(1, RoundingMode.HALF_UP).doubleValue();
@@ -118,17 +106,18 @@ public class SlieroVadDetector {
return result;
}
// Detect speech end
// If the speech probability is less than a certain threshold and in the triggered state, calculate the speech end time
if (speechProb < endThreshold && triggered) {
// Initialize or update temporary end position
// Initialize or update the temporary end time
if (tempEnd == 0) {
tempEnd = currentSample;
}
// Wait for minimum silence duration before confirming speech end
// If the number of silence samples between the current sample and the temporary end time is less than the minimum silence samples, return null
// This indicates that it is not yet possible to determine whether the speech has ended
if (currentSample - tempEnd < minSilenceSamples) {
return Collections.emptyMap();
} else {
// Calculate speech end time and reset state
// Calculate the speech end time, reset the trigger state and temporary end time
int speechEnd = (int) (tempEnd + speechPadSamples);
tempEnd = 0;
triggered = false;
@@ -145,7 +134,7 @@ public class SlieroVadDetector {
}
}
// No speech event detected
// If the above conditions are not met, return null by default
return Collections.emptyMap();
}

View File

@@ -9,58 +9,42 @@ import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* Silero VAD ONNX Model Wrapper
*
* @author VvvvvGH
*/
public class SlieroVadOnnxModel {
// ONNX runtime session
// Define private variable OrtSession
private final OrtSession session;
// Model state - dimensions: [2, batch_size, 128]
private float[][][] state;
// Context - stores the tail of the previous audio chunk
private float[][] context;
// Last sample rate
private float[][][] h;
private float[][][] c;
// Define the last sample rate
private int lastSr = 0;
// Last batch size
// Define the last batch size
private int lastBatchSize = 0;
// Supported sample rates
// Define a list of supported sample rates
private static final List<Integer> SAMPLE_RATES = Arrays.asList(8000, 16000);
// Constructor
public SlieroVadOnnxModel(String modelPath) throws OrtException {
// Get the ONNX runtime environment
OrtEnvironment env = OrtEnvironment.getEnvironment();
// Create ONNX session options
// Create an ONNX session options object
OrtSession.SessionOptions opts = new OrtSession.SessionOptions();
// Set InterOp thread count to 1 (for parallel processing of different graph operations)
// Set the InterOp thread count to 1, InterOp threads are used for parallel processing of different computation graph operations
opts.setInterOpNumThreads(1);
// Set IntraOp thread count to 1 (for parallel processing within a single operation)
// Set the IntraOp thread count to 1, IntraOp threads are used for parallel processing within a single operation
opts.setIntraOpNumThreads(1);
// Enable CPU execution optimization
// Add a CPU device, setting to false disables CPU execution optimization
opts.addCPU(true);
// Create ONNX session with the environment, model path, and options
// Create an ONNX session using the environment, model path, and options
session = env.createSession(modelPath, opts);
// Reset states
resetStates();
}
/**
* Reset states with default batch size
* Reset states
*/
void resetStates() {
resetStates(1);
}
/**
* Reset states with specific batch size
*
* @param batchSize Batch size for state initialization
*/
void resetStates(int batchSize) {
state = new float[2][batchSize][128];
context = new float[0][]; // Empty context
h = new float[2][1][64];
c = new float[2][1][64];
lastSr = 0;
lastBatchSize = 0;
}
@@ -70,12 +54,13 @@ public class SlieroVadOnnxModel {
}
/**
* Inner class for validation result
* Define inner class ValidationResult
*/
public static class ValidationResult {
public final float[][] x;
public final int sr;
// Constructor
public ValidationResult(float[][] x, int sr) {
this.x = x;
this.sr = sr;
@@ -83,23 +68,19 @@ public class SlieroVadOnnxModel {
}
/**
* Validate input data
*
* @param x Audio data array
* @param sr Sample rate
* @return Validated input data and sample rate
* Function to validate input data
*/
private ValidationResult validateInput(float[][] x, int sr) {
// Ensure input is at least 2D
// Process the input data with dimension 1
if (x.length == 1) {
x = new float[][]{x[0]};
}
// Check if input dimension is valid
// Throw an exception when the input data dimension is greater than 2
if (x.length > 2) {
throw new IllegalArgumentException("Incorrect audio data dimension: " + x[0].length);
}
// Downsample if sample rate is a multiple of 16000
// Process the input data when the sample rate is not equal to 16000 and is a multiple of 16000
if (sr != 16000 && (sr % 16000 == 0)) {
int step = sr / 16000;
float[][] reducedX = new float[x.length][];
@@ -119,26 +100,22 @@ public class SlieroVadOnnxModel {
sr = 16000;
}
// Validate sample rate
// If the sample rate is not in the list of supported sample rates, throw an exception
if (!SAMPLE_RATES.contains(sr)) {
throw new IllegalArgumentException("Only supports sample rates " + SAMPLE_RATES + " (or multiples of 16000)");
}
// Check if audio chunk is too short
// If the input audio block is too short, throw an exception
if (((float) sr) / x[0].length > 31.25) {
throw new IllegalArgumentException("Input audio is too short");
}
// Return the validated result
return new ValidationResult(x, sr);
}
/**
* Call the ONNX model for inference
*
* @param x Audio data array
* @param sr Sample rate
* @return Speech probability output
* @throws OrtException If ONNX runtime error occurs
* Method to call the ONNX model
*/
public float[] call(float[][] x, int sr) throws OrtException {
ValidationResult result = validateInput(x, sr);
@@ -146,62 +123,38 @@ public class SlieroVadOnnxModel {
sr = result.sr;
int batchSize = x.length;
int numSamples = sr == 16000 ? 512 : 256;
int contextSize = sr == 16000 ? 64 : 32;
// Reset states only when sample rate or batch size changes
if (lastSr != 0 && lastSr != sr) {
resetStates(batchSize);
} else if (lastBatchSize != 0 && lastBatchSize != batchSize) {
resetStates(batchSize);
} else if (lastBatchSize == 0) {
// First call - state is already initialized, just set batch size
lastBatchSize = batchSize;
}
// Initialize context if needed
if (context.length == 0) {
context = new float[batchSize][contextSize];
}
// Concatenate context and input
float[][] xWithContext = new float[batchSize][contextSize + numSamples];
for (int i = 0; i < batchSize; i++) {
// Copy context
System.arraycopy(context[i], 0, xWithContext[i], 0, contextSize);
// Copy input
System.arraycopy(x[i], 0, xWithContext[i], contextSize, numSamples);
if (lastBatchSize == 0 || lastSr != sr || lastBatchSize != batchSize) {
resetStates();
}
OrtEnvironment env = OrtEnvironment.getEnvironment();
OnnxTensor inputTensor = null;
OnnxTensor stateTensor = null;
OnnxTensor hTensor = null;
OnnxTensor cTensor = null;
OnnxTensor srTensor = null;
OrtSession.Result ortOutputs = null;
try {
// Create input tensors
inputTensor = OnnxTensor.createTensor(env, xWithContext);
stateTensor = OnnxTensor.createTensor(env, state);
inputTensor = OnnxTensor.createTensor(env, x);
hTensor = OnnxTensor.createTensor(env, h);
cTensor = OnnxTensor.createTensor(env, c);
srTensor = OnnxTensor.createTensor(env, new long[]{sr});
Map<String, OnnxTensor> inputs = new HashMap<>();
inputs.put("input", inputTensor);
inputs.put("sr", srTensor);
inputs.put("state", stateTensor);
inputs.put("h", hTensor);
inputs.put("c", cTensor);
// Run ONNX model inference
// Call the ONNX model for calculation
ortOutputs = session.run(inputs);
// Get output results
// Get the output results
float[][] output = (float[][]) ortOutputs.get(0).getValue();
state = (float[][][]) ortOutputs.get(1).getValue();
// Update context - save the last contextSize samples from input
for (int i = 0; i < batchSize; i++) {
System.arraycopy(xWithContext[i], xWithContext[i].length - contextSize,
context[i], 0, contextSize);
}
h = (float[][][]) ortOutputs.get(1).getValue();
c = (float[][][]) ortOutputs.get(2).getValue();
lastSr = sr;
lastBatchSize = batchSize;
@@ -210,8 +163,11 @@ public class SlieroVadOnnxModel {
if (inputTensor != null) {
inputTensor.close();
}
if (stateTensor != null) {
stateTensor.close();
if (hTensor != null) {
hTensor.close();
}
if (cTensor != null) {
cTensor.close();
}
if (srTensor != null) {
srTensor.close();

View File

@@ -1,6 +1,7 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -17,19 +18,17 @@
"SAMPLING_RATE = 16000\n",
"import torch\n",
"from pprint import pprint\n",
"import time\n",
"import shutil\n",
"\n",
"torch.set_num_threads(1)\n",
"NUM_PROCESS=4 # set to the number of CPU cores in the machine\n",
"NUM_COPIES=8\n",
"# download wav files, make multiple copies\n",
"torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en.wav', f\"en_example0.wav\")\n",
"for idx in range(NUM_COPIES-1):\n",
" shutil.copy(f\"en_example0.wav\", f\"en_example{idx+1}.wav\")"
"for idx in range(NUM_COPIES):\n",
" torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en.wav', f\"en_example{idx}.wav\")\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -55,6 +54,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -99,6 +99,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
@@ -126,7 +127,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "diarization",
"language": "python",
"name": "python3"
},
@@ -140,20 +141,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
"version": "3.9.15"
}
},
"nbformat": 4,

View File

@@ -7,8 +7,6 @@ It has been designed as a low-level example for binary real-time streaming using
Currently, the notebook consits of two examples:
- One that records audio of a predefined length from the microphone, process it with Silero-VAD, and plots it afterwards.
- The other one plots the speech probabilities in real-time (using jupyterplot) and records the audio until you press enter.
This example does not work in google colab! For local usage only.
## Example Video for the Real-Time Visualization

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "markdown",
"id": "76aa55ba",
"id": "62a0cccb",
"metadata": {},
"source": [
"# Pyaudio Microphone Streaming Examples\n",
@@ -12,14 +12,12 @@
"I created it as an example on how binary data from a stream could be feed into Silero VAD.\n",
"\n",
"\n",
"Has been tested on Ubuntu 21.04 (x86). After you installed the dependencies below, no additional setup is required.\n",
"\n",
"This notebook does not work in google colab! For local usage only."
"Has been tested on Ubuntu 21.04 (x86). After you installed the dependencies below, no additional setup is required."
]
},
{
"cell_type": "markdown",
"id": "4a4e15c2",
"id": "64cbe1eb",
"metadata": {},
"source": [
"## Dependencies\n",
@@ -28,27 +26,22 @@
},
{
"cell_type": "code",
"execution_count": 1,
"id": "24205cce",
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-09T08:47:34.056898Z",
"start_time": "2024-10-09T08:47:34.053418Z"
}
},
"execution_count": null,
"id": "57bc2aac",
"metadata": {},
"outputs": [],
"source": [
"#!pip install numpy>=1.24.0\n",
"#!pip install torch>=1.12.0\n",
"#!pip install matplotlib>=3.6.0\n",
"#!pip install torchaudio>=0.12.0\n",
"#!pip install numpy==2.0.2\n",
"#!pip install torch==2.4.1\n",
"#!pip install matplotlib==3.9.2\n",
"#!pip install torchaudio==2.4.1\n",
"#!pip install soundfile==0.12.1\n",
"#!apt install python3-pyaudio (linux) or pip install pyaudio (windows)"
"#!pip install pyaudio==0.2.11"
]
},
{
"cell_type": "markdown",
"id": "cd22818f",
"id": "110de761",
"metadata": {},
"source": [
"## Imports"
@@ -56,27 +49,10 @@
},
{
"cell_type": "code",
"execution_count": 2,
"id": "994d7f3a",
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-09T08:47:39.005032Z",
"start_time": "2024-10-09T08:47:36.489952Z"
}
},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'pyaudio'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[2], line 8\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpylab\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m\n\u001b[0;32m----> 8\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpyaudio\u001b[39;00m\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'pyaudio'"
]
}
],
"execution_count": null,
"id": "5a647d8d",
"metadata": {},
"outputs": [],
"source": [
"import io\n",
"import numpy as np\n",
@@ -91,7 +67,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "ac5c52f7",
"id": "725d7066",
"metadata": {},
"outputs": [],
"source": [
@@ -103,7 +79,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "ad5919dc",
"id": "1c0b2ea7",
"metadata": {},
"outputs": [],
"source": [
@@ -116,7 +92,7 @@
},
{
"cell_type": "markdown",
"id": "784d1ab6",
"id": "f9112603",
"metadata": {},
"source": [
"### Helper Methods"
@@ -125,7 +101,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "af4bca64",
"id": "5abc6330",
"metadata": {},
"outputs": [],
"source": [
@@ -148,7 +124,7 @@
},
{
"cell_type": "markdown",
"id": "ca13e514",
"id": "5124095e",
"metadata": {},
"source": [
"## Pyaudio Set-up"
@@ -157,7 +133,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "75f99022",
"id": "a845356e",
"metadata": {},
"outputs": [],
"source": [
@@ -171,7 +147,7 @@
},
{
"cell_type": "markdown",
"id": "4da7d2ef",
"id": "0b910c99",
"metadata": {},
"source": [
"## Simple Example\n",
@@ -181,7 +157,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "6fe77661",
"id": "9d3d2c10",
"metadata": {},
"outputs": [],
"source": [
@@ -191,7 +167,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "23f4da3e",
"id": "3cb44a4a",
"metadata": {},
"outputs": [],
"source": [
@@ -231,7 +207,7 @@
},
{
"cell_type": "markdown",
"id": "fd243e8f",
"id": "a3dda982",
"metadata": {},
"source": [
"## Real Time Visualization\n",
@@ -244,7 +220,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "d36980c2",
"id": "05ef4100",
"metadata": {},
"outputs": [],
"source": [
@@ -254,7 +230,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "5607b616",
"id": "d1d4cdd6",
"metadata": {},
"outputs": [],
"source": [
@@ -311,7 +287,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "dc4f0108",
"id": "1e398009",
"metadata": {},
"outputs": [],
"source": [
@@ -335,7 +311,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
"version": "3.9.10"
},
"toc": {
"base_numbering": 1,

View File

@@ -23,14 +23,11 @@ def versiontuple(v):
return tuple(version_list)
def silero_vad(onnx=False, force_onnx_cpu=False, opset_version=16):
def silero_vad(onnx=False, force_onnx_cpu=False):
"""Silero Voice Activity Detector
Returns a model with a set of utils
Please see https://github.com/snakers4/silero-vad for usage examples
"""
available_ops = [15, 16]
if onnx and opset_version not in available_ops:
raise Exception(f'Available ONNX opset_version: {available_ops}')
if not onnx:
installed_version = torch.__version__
@@ -40,11 +37,7 @@ def silero_vad(onnx=False, force_onnx_cpu=False, opset_version=16):
model_dir = os.path.join(os.path.dirname(__file__), 'src', 'silero_vad', 'data')
if onnx:
if opset_version == 16:
model_name = 'silero_vad.onnx'
else:
model_name = f'silero_vad_16k_op{opset_version}.onnx'
model = OnnxWrapper(os.path.join(model_dir, model_name), force_onnx_cpu)
model = OnnxWrapper(os.path.join(model_dir, 'silero_vad.onnx'), force_onnx_cpu)
else:
model = init_jit_model(os.path.join(model_dir, 'silero_vad.jit'))
utils = (get_speech_timestamps,

View File

@@ -3,7 +3,7 @@ requires = ["hatchling"]
build-backend = "hatchling.build"
[project]
name = "silero-vad"
version = "6.1.0"
version = "5.1"
authors = [
{name="Silero Team", email="hello@silero.ai"},
]
@@ -21,14 +21,10 @@ classifiers = [
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3.13",
"Programming Language :: Python :: 3.14",
"Programming Language :: Python :: 3.15",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Scientific/Engineering",
]
dependencies = [
"packaging",
"torch>=1.12.0",
"torchaudio>=0.12.0",
"onnxruntime>=1.16.1",
@@ -36,4 +32,4 @@ dependencies = [
[project.urls]
Homepage = "https://github.com/snakers4/silero-vad"
Issues = "https://github.com/snakers4/silero-vad/issues"
Issues = "https://github.com/snakers4/silero-vad/issues"

View File

@@ -9,5 +9,4 @@ from silero_vad.utils_vad import (get_speech_timestamps,
save_audio,
read_audio,
VADIterator,
collect_chunks,
drop_chunks)
collect_chunks)

Binary file not shown.

Binary file not shown.

View File

@@ -2,21 +2,10 @@ from .utils_vad import init_jit_model, OnnxWrapper
import torch
torch.set_num_threads(1)
def load_silero_vad(onnx=False, opset_version=16):
available_ops = [15, 16]
if onnx and opset_version not in available_ops:
raise Exception(f'Available ONNX opset_version: {available_ops}')
if onnx:
if opset_version == 16:
model_name = 'silero_vad.onnx'
else:
model_name = f'silero_vad_16k_op{opset_version}.onnx'
else:
model_name = 'silero_vad.jit'
def load_silero_vad(onnx=False):
model_name = 'silero_vad.onnx' if onnx else 'silero_vad.jit'
package_path = "silero_vad.data"
try:
import importlib_resources as impresources
model_file_path = str(impresources.files(package_path).joinpath(model_name))
@@ -29,8 +18,8 @@ def load_silero_vad(onnx=False, opset_version=16):
model_file_path = str(impresources.files(package_path).joinpath(model_name))
if onnx:
model = OnnxWrapper(str(model_file_path), force_onnx_cpu=True)
model = OnnxWrapper(model_file_path, force_onnx_cpu=True)
else:
model = init_jit_model(model_file_path)
return model

View File

@@ -2,7 +2,6 @@ import torch
import torchaudio
from typing import Callable, List
import warnings
from packaging import version
languages = ['ru', 'en', 'de', 'es']
@@ -24,11 +23,7 @@ class OnnxWrapper():
self.session = onnxruntime.InferenceSession(path, sess_options=opts)
self.reset_states()
if '16k' in path:
warnings.warn('This model support only 16000 sampling rate!')
self.sample_rates = [16000]
else:
self.sample_rates = [8000, 16000]
self.sample_rates = [8000, 16000]
def _validate_input(self, x, sr: int):
if x.dim() == 1:
@@ -135,60 +130,40 @@ class Validator():
return outs
def read_audio(path: str, sampling_rate: int = 16000) -> torch.Tensor:
ta_ver = version.parse(torchaudio.__version__)
if ta_ver < version.parse("2.9"):
try:
effects = [['channels', '1'],['rate', str(sampling_rate)]]
wav, sr = torchaudio.sox_effects.apply_effects_file(path, effects=effects)
except:
wav, sr = torchaudio.load(path)
else:
try:
wav, sr = torchaudio.load(path)
except:
try:
from torchcodec.decoders import AudioDecoder
samples = AudioDecoder(path).get_all_samples()
wav = samples.data
sr = samples.sample_rate
except ImportError:
raise RuntimeError(
f"torchaudio version {torchaudio.__version__} requires torchcodec for audio I/O. "
+ "Install torchcodec or pin torchaudio < 2.9"
)
def read_audio(path: str,
sampling_rate: int = 16000):
list_backends = torchaudio.list_audio_backends()
if wav.ndim > 1 and wav.size(0) > 1:
wav = wav.mean(dim=0, keepdim=True)
assert len(list_backends) > 0, 'The list of available backends is empty, please install backend manually. \
\n Recommendations: \n \tSox (UNIX OS) \n \tSoundfile (Windows OS, UNIX OS) \n \tffmpeg (Windows OS, UNIX OS)'
if sr != sampling_rate:
wav = torchaudio.transforms.Resample(sr, sampling_rate)(wav)
try:
effects = [
['channels', '1'],
['rate', str(sampling_rate)]
]
wav, sr = torchaudio.sox_effects.apply_effects_file(path, effects=effects)
except:
wav, sr = torchaudio.load(path)
if wav.size(0) > 1:
wav = wav.mean(dim=0, keepdim=True)
if sr != sampling_rate:
transform = torchaudio.transforms.Resample(orig_freq=sr,
new_freq=sampling_rate)
wav = transform(wav)
sr = sampling_rate
assert sr == sampling_rate
return wav.squeeze(0)
def save_audio(path: str, tensor: torch.Tensor, sampling_rate: int = 16000):
tensor = tensor.detach().cpu()
if tensor.ndim == 1:
tensor = tensor.unsqueeze(0)
ta_ver = version.parse(torchaudio.__version__)
try:
torchaudio.save(path, tensor, sampling_rate, bits_per_sample=16)
except Exception:
if ta_ver >= version.parse("2.9"):
try:
from torchcodec.encoders import AudioEncoder
encoder = AudioEncoder(tensor, sample_rate=16000)
encoder.to_file(path)
except ImportError:
raise RuntimeError(
f"torchaudio version {torchaudio.__version__} requires torchcodec for saving. "
+ "Install torchcodec or pin torchaudio < 2.9"
)
else:
raise
def save_audio(path: str,
tensor: torch.Tensor,
sampling_rate: int = 16000):
torchaudio.save(path, tensor.unsqueeze(0), sampling_rate, bits_per_sample=16)
def init_jit_model(model_path: str,
@@ -218,13 +193,10 @@ def get_speech_timestamps(audio: torch.Tensor,
min_silence_duration_ms: int = 100,
speech_pad_ms: int = 30,
return_seconds: bool = False,
time_resolution: int = 1,
visualize_probs: bool = False,
progress_tracking_callback: Callable[[float], None] = None,
neg_threshold: float = None,
window_size_samples: int = 512,
min_silence_at_max_speech: float = 98,
use_max_poss_sil_at_max_speech: bool = True):
window_size_samples: int = 512,):
"""
This method is used for splitting long audios into speech chunks using silero VAD
@@ -248,7 +220,7 @@ def get_speech_timestamps(audio: torch.Tensor,
max_speech_duration_s: int (default - inf)
Maximum duration of speech chunks in seconds
Chunks longer than max_speech_duration_s will be split at the timestamp of the last silence that lasts more than 100ms (if any), to prevent aggressive cutting.
Chunks longer than max_speech_duration_s will be split at the timestamp of the last silence that lasts more than 100ms (if any), to prevent agressive cutting.
Otherwise, they will be split aggressively just before max_speech_duration_s.
min_silence_duration_ms: int (default - 100 milliseconds)
@@ -260,9 +232,6 @@ def get_speech_timestamps(audio: torch.Tensor,
return_seconds: bool (default - False)
whether return timestamps in seconds (default - samples)
time_resolution: bool (default - 1)
time resolution of speech coordinates when requested as seconds
visualize_probs: bool (default - False)
whether draw prob hist or not
@@ -272,12 +241,6 @@ def get_speech_timestamps(audio: torch.Tensor,
neg_threshold: float (default = threshold - 0.15)
Negative threshold (noise or exit threshold). If model's current state is SPEECH, values BELOW this value are considered as NON-SPEECH.
min_silence_at_max_speech: float (default - 98ms)
Minimum silence duration in ms which is used to avoid abrupt cuts when max_speech_duration_s is reached
use_max_poss_sil_at_max_speech: bool (default - True)
Whether to use the maximum possible silence at max_speech_duration_s or not. If not, the last silence is used.
window_size_samples: int (default - 512 samples)
!!! DEPRECATED, DOES NOTHING !!!
@@ -286,6 +249,7 @@ def get_speech_timestamps(audio: torch.Tensor,
speeches: list of dicts
list containing ends and beginnings of speech chunks (samples or seconds based on return_seconds)
"""
if not torch.is_tensor(audio):
try:
audio = torch.Tensor(audio)
@@ -316,7 +280,7 @@ def get_speech_timestamps(audio: torch.Tensor,
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
max_speech_samples = sampling_rate * max_speech_duration_s - window_size_samples - 2 * speech_pad_samples
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
min_silence_samples_at_max_speech = sampling_rate * min_silence_at_max_speech / 1000
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000
audio_length_samples = len(audio)
@@ -327,7 +291,7 @@ def get_speech_timestamps(audio: torch.Tensor,
chunk = torch.nn.functional.pad(chunk, (0, int(window_size_samples - len(chunk))))
speech_prob = model(chunk, sampling_rate).item()
speech_probs.append(speech_prob)
# calculate progress and send it to callback function
# caculate progress and seng it to callback function
progress = current_start_sample + window_size_samples
if progress > audio_length_samples:
progress = audio_length_samples
@@ -340,76 +304,45 @@ def get_speech_timestamps(audio: torch.Tensor,
current_speech = {}
if neg_threshold is None:
neg_threshold = max(threshold - 0.15, 0.01)
neg_threshold = threshold - 0.15
temp_end = 0 # to save potential segment end (and tolerate some silence)
prev_end = next_start = 0 # to save potential segment limits in case of maximum segment size reached
possible_ends = []
for i, speech_prob in enumerate(speech_probs):
cur_sample = window_size_samples * i
# If speech returns after a temp_end, record candidate silence if long enough and clear temp_end
if (speech_prob >= threshold) and temp_end:
sil_dur = cur_sample - temp_end
if sil_dur > min_silence_samples_at_max_speech:
possible_ends.append((temp_end, sil_dur))
temp_end = 0
if next_start < prev_end:
next_start = cur_sample
next_start = window_size_samples * i
# Start of speech
if (speech_prob >= threshold) and not triggered:
triggered = True
current_speech['start'] = cur_sample
current_speech['start'] = window_size_samples * i
continue
# Max speech length reached: decide where to cut
if triggered and (cur_sample - current_speech['start'] > max_speech_samples):
if use_max_poss_sil_at_max_speech and possible_ends:
prev_end, dur = max(possible_ends, key=lambda x: x[1]) # use the longest possible silence segment in the current speech chunk
if triggered and (window_size_samples * i) - current_speech['start'] > max_speech_samples:
if prev_end:
current_speech['end'] = prev_end
speeches.append(current_speech)
current_speech = {}
next_start = prev_end + dur
if next_start < prev_end + cur_sample: # previously reached silence (< neg_thres) and is still not speech (< thres)
if next_start < prev_end: # previously reached silence (< neg_thres) and is still not speech (< thres)
triggered = False
else:
current_speech['start'] = next_start
else:
triggered = False
prev_end = next_start = temp_end = 0
possible_ends = []
else:
# Legacy max-speech cut (use_max_poss_sil_at_max_speech=False): prefer last valid silence (prev_end) if available
if prev_end:
current_speech['end'] = prev_end
speeches.append(current_speech)
current_speech = {}
if next_start < prev_end:
triggered = False
else:
current_speech['start'] = next_start
prev_end = next_start = temp_end = 0
possible_ends = []
else:
# No prev_end -> fallback to cutting at current sample
current_speech['end'] = cur_sample
speeches.append(current_speech)
current_speech = {}
prev_end = next_start = temp_end = 0
triggered = False
possible_ends = []
continue
current_speech['end'] = window_size_samples * i
speeches.append(current_speech)
current_speech = {}
prev_end = next_start = temp_end = 0
triggered = False
continue
# Silence detection while in speech
if (speech_prob < neg_threshold) and triggered:
if not temp_end:
temp_end = cur_sample
sil_dur_now = cur_sample - temp_end
if not use_max_poss_sil_at_max_speech and sil_dur_now > min_silence_samples_at_max_speech: # condition to avoid cutting in very short silence
temp_end = window_size_samples * i
if ((window_size_samples * i) - temp_end) > min_silence_samples_at_max_speech: # condition to avoid cutting in very short silence
prev_end = temp_end
if sil_dur_now < min_silence_samples:
if (window_size_samples * i) - temp_end < min_silence_samples:
continue
else:
current_speech['end'] = temp_end
@@ -418,7 +351,6 @@ def get_speech_timestamps(audio: torch.Tensor,
current_speech = {}
prev_end = next_start = temp_end = 0
triggered = False
possible_ends = []
continue
if current_speech and (audio_length_samples - current_speech['start']) > min_speech_samples:
@@ -440,10 +372,9 @@ def get_speech_timestamps(audio: torch.Tensor,
speech['end'] = int(min(audio_length_samples, speech['end'] + speech_pad_samples))
if return_seconds:
audio_length_seconds = audio_length_samples / sampling_rate
for speech_dict in speeches:
speech_dict['start'] = max(round(speech_dict['start'] / sampling_rate, time_resolution), 0)
speech_dict['end'] = min(round(speech_dict['end'] / sampling_rate, time_resolution), audio_length_seconds)
speech_dict['start'] = round(speech_dict['start'] / sampling_rate, 1)
speech_dict['end'] = round(speech_dict['end'] / sampling_rate, 1)
elif step > 1:
for speech_dict in speeches:
speech_dict['start'] *= step
@@ -504,16 +435,13 @@ class VADIterator:
self.current_sample = 0
@torch.no_grad()
def __call__(self, x, return_seconds=False, time_resolution: int = 1):
def __call__(self, x, return_seconds=False):
"""
x: torch.Tensor
audio chunk (see examples in repo)
return_seconds: bool (default - False)
whether return timestamps in seconds (default - samples)
time_resolution: int (default - 1)
time resolution of speech coordinates when requested as seconds
"""
if not torch.is_tensor(x):
@@ -533,7 +461,7 @@ class VADIterator:
if (speech_prob >= self.threshold) and not self.triggered:
self.triggered = True
speech_start = max(0, self.current_sample - self.speech_pad_samples - window_size_samples)
return {'start': int(speech_start) if not return_seconds else round(speech_start / self.sampling_rate, time_resolution)}
return {'start': int(speech_start) if not return_seconds else round(speech_start / self.sampling_rate, 1)}
if (speech_prob < self.threshold - 0.15) and self.triggered:
if not self.temp_end:
@@ -544,112 +472,24 @@ class VADIterator:
speech_end = self.temp_end + self.speech_pad_samples - window_size_samples
self.temp_end = 0
self.triggered = False
return {'end': int(speech_end) if not return_seconds else round(speech_end / self.sampling_rate, time_resolution)}
return {'end': int(speech_end) if not return_seconds else round(speech_end / self.sampling_rate, 1)}
return None
def collect_chunks(tss: List[dict],
wav: torch.Tensor,
seconds: bool = False,
sampling_rate: int = None) -> torch.Tensor:
"""Collect audio chunks from a longer audio clip
This method extracts audio chunks from an audio clip, using a list of
provided coordinates, and concatenates them together. Coordinates can be
passed either as sample numbers or in seconds, in which case the audio
sampling rate is also needed.
Parameters
----------
tss: List[dict]
Coordinate list of the clips to collect from the audio.
wav: torch.Tensor, one dimensional
One dimensional float torch.Tensor, containing the audio to clip.
seconds: bool (default - False)
Whether input coordinates are passed as seconds or samples.
sampling_rate: int (default - None)
Input audio sampling rate. Required if seconds is True.
Returns
-------
torch.Tensor, one dimensional
One dimensional float torch.Tensor of the concatenated clipped audio
chunks.
Raises
------
ValueError
Raised if sampling_rate is not provided when seconds is True.
"""
if seconds and not sampling_rate:
raise ValueError('sampling_rate must be provided when seconds is True')
chunks = list()
_tss = _seconds_to_samples_tss(tss, sampling_rate) if seconds else tss
for i in _tss:
chunks.append(wav[i['start']:i['end']])
wav: torch.Tensor):
chunks = []
for i in tss:
chunks.append(wav[i['start']: i['end']])
return torch.cat(chunks)
def drop_chunks(tss: List[dict],
wav: torch.Tensor,
seconds: bool = False,
sampling_rate: int = None) -> torch.Tensor:
"""Drop audio chunks from a longer audio clip
This method extracts audio chunks from an audio clip, using a list of
provided coordinates, and drops them. Coordinates can be passed either as
sample numbers or in seconds, in which case the audio sampling rate is also
needed.
Parameters
----------
tss: List[dict]
Coordinate list of the clips to drop from from the audio.
wav: torch.Tensor, one dimensional
One dimensional float torch.Tensor, containing the audio to clip.
seconds: bool (default - False)
Whether input coordinates are passed as seconds or samples.
sampling_rate: int (default - None)
Input audio sampling rate. Required if seconds is True.
Returns
-------
torch.Tensor, one dimensional
One dimensional float torch.Tensor of the input audio minus the dropped
chunks.
Raises
------
ValueError
Raised if sampling_rate is not provided when seconds is True.
"""
if seconds and not sampling_rate:
raise ValueError('sampling_rate must be provided when seconds is True')
chunks = list()
wav: torch.Tensor):
chunks = []
cur_start = 0
_tss = _seconds_to_samples_tss(tss, sampling_rate) if seconds else tss
for i in _tss:
for i in tss:
chunks.append((wav[cur_start: i['start']]))
cur_start = i['end']
chunks.append(wav[cur_start:])
return torch.cat(chunks)
def _seconds_to_samples_tss(tss: List[dict], sampling_rate: int) -> List[dict]:
"""Convert coordinates expressed in seconds to sample coordinates.
"""
return [{
'start': round(crd['start']) * sampling_rate,
'end': round(crd['end']) * sampling_rate
} for crd in tss]

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -1,22 +0,0 @@
from silero_vad import load_silero_vad, read_audio, get_speech_timestamps
import torch
torch.set_num_threads(1)
def test_jit_model():
model = load_silero_vad(onnx=False)
for path in ["tests/data/test.wav", "tests/data/test.opus", "tests/data/test.mp3"]:
audio = read_audio(path, sampling_rate=16000)
speech_timestamps = get_speech_timestamps(audio, model, visualize_probs=False, return_seconds=True)
assert speech_timestamps is not None
out = model.audio_forward(audio, sr=16000)
assert out is not None
def test_onnx_model():
model = load_silero_vad(onnx=True)
for path in ["tests/data/test.wav", "tests/data/test.opus", "tests/data/test.mp3"]:
audio = read_audio(path, sampling_rate=16000)
speech_timestamps = get_speech_timestamps(audio, model, visualize_probs=False, return_seconds=True)
assert speech_timestamps is not None
out = model.audio_forward(audio, sr=16000)
assert out is not None

View File

@@ -118,6 +118,8 @@ class SileroVadDataset(Dataset):
assert len(gt) == len(wav) / self.num_samples
mask[gt == 0]
return wav, gt, mask
def get_ground_truth_annotated(self, annotation, audio_length_samples):
@@ -238,7 +240,6 @@ def train(config,
loss = criterion(stacked, targets)
loss = (loss * masks).mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses.update(loss.item(), masks.numel())