mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-05 01:49:22 +08:00
Compare commits
1 Commits
adamnsandl
...
v3.1
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f9876dd5f9 |
40
.github/workflows/python-publish.yml
vendored
40
.github/workflows/python-publish.yml
vendored
@@ -1,40 +0,0 @@
|
|||||||
# This workflow will upload a Python Package using Twine when a release is created
|
|
||||||
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python#publishing-to-package-registries
|
|
||||||
|
|
||||||
# This workflow uses actions that are not certified by GitHub.
|
|
||||||
# They are provided by a third-party and are governed by
|
|
||||||
# separate terms of service, privacy policy, and support
|
|
||||||
# documentation.
|
|
||||||
|
|
||||||
name: Upload Python Package
|
|
||||||
|
|
||||||
on:
|
|
||||||
push:
|
|
||||||
tags:
|
|
||||||
- '*'
|
|
||||||
|
|
||||||
permissions:
|
|
||||||
contents: read
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
deploy:
|
|
||||||
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v4
|
|
||||||
- name: Set up Python
|
|
||||||
uses: actions/setup-python@v3
|
|
||||||
with:
|
|
||||||
python-version: '3.x'
|
|
||||||
- name: Install dependencies
|
|
||||||
run: |
|
|
||||||
python -m pip install --upgrade pip
|
|
||||||
pip install build
|
|
||||||
- name: Build package
|
|
||||||
run: python -m build
|
|
||||||
- name: Publish package
|
|
||||||
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
|
|
||||||
with:
|
|
||||||
user: __token__
|
|
||||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
|
||||||
56
README.md
56
README.md
@@ -10,66 +10,48 @@
|
|||||||
|
|
||||||
**Silero VAD** - pre-trained enterprise-grade [Voice Activity Detector](https://en.wikipedia.org/wiki/Voice_activity_detection) (also see our [STT models](https://github.com/snakers4/silero-models)).
|
**Silero VAD** - pre-trained enterprise-grade [Voice Activity Detector](https://en.wikipedia.org/wiki/Voice_activity_detection) (also see our [STT models](https://github.com/snakers4/silero-models)).
|
||||||
|
|
||||||
|
This repository also includes Number Detector and Language classifier [models](https://github.com/snakers4/silero-vad/wiki/Other-Models)
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="https://github.com/snakers4/silero-vad/assets/36505480/300bd062-4da5-4f19-9736-9c144a45d7a7" />
|
<img src="https://user-images.githubusercontent.com/36505480/145563071-681b57e3-06b5-4cd0-bdee-e2ade3d50a60.png" />
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>Real Time Example</summary>
|
<summary>Real Time Example</summary>
|
||||||
|
|
||||||
https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc-9be7-004c891dd481.mp4
|
https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc-9be7-004c891dd481.mp4
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
<h2 align="center">Key Features</h2>
|
<h2 align="center">Key Features</h2>
|
||||||
<br/>
|
<br/>
|
||||||
|
|
||||||
- **Stellar accuracy**
|
- **High accuracy**
|
||||||
|
|
||||||
Silero VAD has [excellent results](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#vs-other-available-solutions) on speech detection tasks.
|
Silero VAD has [excellent results](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#vs-other-available-solutions) on speech detection tasks.
|
||||||
|
|
||||||
- **Fast**
|
- **Fast**
|
||||||
|
|
||||||
One audio chunk (30+ ms) [takes](https://github.com/snakers4/silero-vad/wiki/Performance-Metrics#silero-vad-performance-metrics) less than **1ms** to be processed on a single CPU thread. Using batching or GPU can also improve performance considerably. Under certain conditions ONNX may even run up to 4-5x faster.
|
One audio chunk (30+ ms) [takes](https://github.com/snakers4/silero-vad/wiki/Performance-Metrics#silero-vad-performance-metrics) around **1ms** to be processed on a single CPU thread. Using batching or GPU can also improve performance considerably.
|
||||||
|
|
||||||
- **Lightweight**
|
- **Lightweight**
|
||||||
|
|
||||||
JIT model is around two megabytes in size.
|
JIT model is less than one megabyte in size.
|
||||||
|
|
||||||
- **General**
|
- **General**
|
||||||
|
|
||||||
Silero VAD was trained on huge corpora that include over **6000** languages and it performs well on audios from different domains with various background noise and quality levels.
|
Silero VAD was trained on huge corpora that include over **100** languages and it performs well on audios from different domains with various background noise and quality levels.
|
||||||
|
|
||||||
- **Flexible sampling rate**
|
- **Flexible sampling rate**
|
||||||
|
|
||||||
Silero VAD [supports](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#sample-rate-comparison) **8000 Hz** and **16000 Hz** [sampling rates](https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate).
|
Silero VAD [supports](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#sample-rate-comparison) **8000 Hz** and **16000 Hz** (JIT) and **16000 Hz** (ONNX) [sampling rates](https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate).
|
||||||
|
|
||||||
- **Highly Portable**
|
- **Flexible chunk size**
|
||||||
|
|
||||||
Silero VAD reaps benefits from the rich ecosystems built around **PyTorch** and **ONNX** running everywhere where these runtimes are available.
|
Model was trained on audio chunks of different lengths. **30 ms**, **60 ms** and **100 ms** long chunks are supported directly, others may work as well.
|
||||||
|
|
||||||
- **No Strings Attached**
|
|
||||||
|
|
||||||
Published under permissive license (MIT) Silero VAD has zero strings attached - no telemetry, no keys, no registration, no built-in expiration, no keys or vendor lock.
|
|
||||||
|
|
||||||
<br/>
|
|
||||||
<h2 align="center">Fast start</h2>
|
|
||||||
<br/>
|
|
||||||
|
|
||||||
```python3
|
|
||||||
import torch
|
|
||||||
torch.set_num_threads(1)
|
|
||||||
|
|
||||||
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad', model='silero_vad')
|
|
||||||
(get_speech_timestamps, _, read_audio, _, _) = utils
|
|
||||||
|
|
||||||
wav = read_audio('path_to_audio_file')
|
|
||||||
speech_timestamps = get_speech_timestamps(wav, model)
|
|
||||||
```
|
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
<h2 align="center">Typical Use Cases</h2>
|
<h2 align="center">Typical Use Cases</h2>
|
||||||
@@ -88,9 +70,9 @@ speech_timestamps = get_speech_timestamps(wav, model)
|
|||||||
- [Examples and Dependencies](https://github.com/snakers4/silero-vad/wiki/Examples-and-Dependencies#dependencies)
|
- [Examples and Dependencies](https://github.com/snakers4/silero-vad/wiki/Examples-and-Dependencies#dependencies)
|
||||||
- [Quality Metrics](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics)
|
- [Quality Metrics](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics)
|
||||||
- [Performance Metrics](https://github.com/snakers4/silero-vad/wiki/Performance-Metrics)
|
- [Performance Metrics](https://github.com/snakers4/silero-vad/wiki/Performance-Metrics)
|
||||||
|
- Number Detector and Language classifier [models](https://github.com/snakers4/silero-vad/wiki/Other-Models)
|
||||||
- [Versions and Available Models](https://github.com/snakers4/silero-vad/wiki/Version-history-and-Available-Models)
|
- [Versions and Available Models](https://github.com/snakers4/silero-vad/wiki/Version-history-and-Available-Models)
|
||||||
- [Further reading](https://github.com/snakers4/silero-models#further-reading)
|
- [Further reading](https://github.com/snakers4/silero-models#further-reading)
|
||||||
- [FAQ](https://github.com/snakers4/silero-vad/wiki/FAQ)
|
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
<h2 align="center">Get In Touch</h2>
|
<h2 align="center">Get In Touch</h2>
|
||||||
@@ -98,7 +80,7 @@ speech_timestamps = get_speech_timestamps(wav, model)
|
|||||||
|
|
||||||
Try our models, create an [issue](https://github.com/snakers4/silero-vad/issues/new), start a [discussion](https://github.com/snakers4/silero-vad/discussions/new), join our telegram [chat](https://t.me/silero_speech), [email](mailto:hello@silero.ai) us, read our [news](https://t.me/silero_news).
|
Try our models, create an [issue](https://github.com/snakers4/silero-vad/issues/new), start a [discussion](https://github.com/snakers4/silero-vad/discussions/new), join our telegram [chat](https://t.me/silero_speech), [email](mailto:hello@silero.ai) us, read our [news](https://t.me/silero_news).
|
||||||
|
|
||||||
Please see our [wiki](https://github.com/snakers4/silero-models/wiki) for relevant information and [email](mailto:hello@silero.ai) us directly.
|
Please see our [wiki](https://github.com/snakers4/silero-models/wiki) and [tiers](https://github.com/snakers4/silero-models/wiki/Licensing-and-Tiers) for relevant information and [email](mailto:hello@silero.ai) us directly.
|
||||||
|
|
||||||
**Citations**
|
**Citations**
|
||||||
|
|
||||||
@@ -114,13 +96,3 @@ Please see our [wiki](https://github.com/snakers4/silero-models/wiki) for releva
|
|||||||
email = {hello@silero.ai}
|
email = {hello@silero.ai}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
<br/>
|
|
||||||
<h2 align="center">Examples and VAD-based Community Apps</h2>
|
|
||||||
<br/>
|
|
||||||
|
|
||||||
- Example of VAD ONNX Runtime model usage in [C++](https://github.com/snakers4/silero-vad/tree/master/examples/cpp)
|
|
||||||
|
|
||||||
- Voice activity detection for the [browser](https://github.com/ricky0123/vad) using ONNX Runtime Web
|
|
||||||
|
|
||||||
- [Rust](https://github.com/snakers4/silero-vad/tree/master/examples/rust-example), [Go](https://github.com/snakers4/silero-vad/tree/master/examples/go), [Java](https://github.com/snakers4/silero-vad/tree/master/examples/java-example) and [other](https://github.com/snakers4/silero-vad/tree/master/examples) examples
|
|
||||||
|
|||||||
@@ -1,84 +0,0 @@
|
|||||||
# Датасет Silero-VAD
|
|
||||||
|
|
||||||
> Датасет создан при поддержке Фонда содействия инновациям в рамках федерального проекта «Искусственный
|
|
||||||
интеллект» национальной программы «Цифровая экономика Российской Федерации».
|
|
||||||
|
|
||||||
По ссылкам ниже представлены `.feather` файлы, содержащие размеченные с помощью Silero VAD открытые наборы аудиоданных, а также короткое описание каждого набора данных с примерами загрузки. `.feather` файлы можно открыть с помощью библиотеки `pandas`:
|
|
||||||
```python3
|
|
||||||
import pandas as pd
|
|
||||||
dataframe = pd.read_feather(PATH_TO_FEATHER_FILE)
|
|
||||||
```
|
|
||||||
|
|
||||||
Каждый `.feather` файл с разметкой содержит следующие колонки:
|
|
||||||
- `speech_timings` - разметка данного аудио. Это список, содержащий словари вида `{'start': START_SECOND, 'end': END_SECOND}`, где `START_SECOND` и `END_SECOND` - время начала и конца речи в секундах. Количество данных словарей равно количеству речевых аудио отрывков, найденных в данном аудио;
|
|
||||||
- `language` - ISO код языка данного аудио.
|
|
||||||
|
|
||||||
Колонки, содержащие информацию о загрузке аудио файла различаются и описаны для каждого набора данных ниже.
|
|
||||||
|
|
||||||
**Все данные размечены при временной дискретизации в ~30 миллисекунд (`num_samples` - 512)**
|
|
||||||
|
|
||||||
| Название | Число часов | Число языков | Ссылка | Лицензия | md5sum |
|
|
||||||
|----------------------|-------------|-------------|--------|----------|----------|
|
|
||||||
| **Bible.is** | 53,138 | 1,596 | [URL](https://live.bible.is/) | [Уникальная](https://live.bible.is/terms) | ea404eeaf2cd283b8223f63002be11f9 |
|
|
||||||
| **globalrecordings.net** | 9,743 | 6,171[^1] | [URL](https://globalrecordings.net/en) | CC BY-NC-SA 4.0 | 3c5c0f31b0abd9fe94ddbe8b1e2eb326 |
|
|
||||||
| **VoxLingua107** | 6,628 | 107 | [URL](https://bark.phon.ioc.ee/voxlingua107/) | CC BY 4.0 | 5dfef33b4d091b6d399cfaf3d05f2140 |
|
|
||||||
| **Common Voice** | 30,329 | 120 | [URL](https://commonvoice.mozilla.org/en/datasets) | CC0 | 5e30a85126adf74a5fd1496e6ac8695d |
|
|
||||||
| **MLS** | 50,709 | 8 | [URL](https://www.openslr.org/94/) | CC BY 4.0 | a339d0e94bdf41bba3c003756254ac4e |
|
|
||||||
| **Итого** | **150,547** | **6,171+** | | | |
|
|
||||||
|
|
||||||
## Bible.is
|
|
||||||
|
|
||||||
[Ссылка на `.feather` файл с разметкой](https://models.silero.ai/vad_datasets/BibleIs.feather)
|
|
||||||
|
|
||||||
- Колонка `audio_link` содержит ссылки на конкретные аудио файлы.
|
|
||||||
|
|
||||||
## globalrecordings.net
|
|
||||||
|
|
||||||
[Ссылка на `.feather` файл с разметкой](https://models.silero.ai/vad_datasets/globalrecordings.feather)
|
|
||||||
|
|
||||||
- Колонка `folder_link` содержит ссылки на скачивание `.zip` архива для конкретного языка. Внимание! Ссылки на архивы дублируются, т.к каждый архив может содержать множество аудио.
|
|
||||||
- Колонка `audio_path` содержит пути до конкретного аудио после распаковки соответствующего архива из колонки `folder_link`
|
|
||||||
|
|
||||||
``Количество уникальных ISO кодов данного датасета не совпадает с фактическим количеством представленных языков, т.к некоторые близкие языки могут кодироваться одним и тем же ISO кодом.``
|
|
||||||
|
|
||||||
## VoxLingua107
|
|
||||||
|
|
||||||
[Ссылка на `.feather` файл с разметкой](https://models.silero.ai/vad_datasets/VoxLingua107.feather)
|
|
||||||
|
|
||||||
- Колонка `folder_link` содержит ссылки на скачивание `.zip` архива для конкретного языка. Внимание! Ссылки на архивы дублируются, т.к каждый архив может содержать множество аудио.
|
|
||||||
- Колонка `audio_path` содержит пути до конкретного аудио после распаковки соответствующего архива из колонки `folder_link`
|
|
||||||
|
|
||||||
## Common Voice
|
|
||||||
|
|
||||||
[Ссылка на `.feather` файл с разметкой](https://models.silero.ai/vad_datasets/common_voice.feather)
|
|
||||||
|
|
||||||
Этот датасет невозможно скачать по статичным ссылкам. Для загрузки необходимо перейти по [ссылке](https://commonvoice.mozilla.org/en/datasets) и, получив доступ в соответствующей форме, скачать архивы для каждого доступного языка. Внимание! Представленная разметка актуальна для версии исходного датасета `Common Voice Corpus 16.1`.
|
|
||||||
|
|
||||||
- Колонка `audio_path` содержит уникальные названия `.mp3` файлов, полученных после скачивания соответствующего датасета.
|
|
||||||
|
|
||||||
## MLS
|
|
||||||
|
|
||||||
[Ссылка на `.feather` файл с разметкой](https://models.silero.ai/vad_datasets/MLS.feather)
|
|
||||||
|
|
||||||
- Колонка `folder_link` содержит ссылки на скачивание `.zip` архива для конкретного языка. Внимание! Ссылки на архивы дублируются, т.к каждый архив может содержать множество аудио.
|
|
||||||
- Колонка `audio_path` содержит пути до конкретного аудио после распаковки соответствующего архива из колонки `folder_link`
|
|
||||||
|
|
||||||
## Лицензия
|
|
||||||
|
|
||||||
Данный датасет распространяется под [лицензией](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en) `CC BY-NC-SA 4.0`.
|
|
||||||
|
|
||||||
## Цитирование
|
|
||||||
|
|
||||||
```
|
|
||||||
@misc{Silero VAD Dataset,
|
|
||||||
author = {Silero Team},
|
|
||||||
title = {Silero-VAD Dataset: a large public Internet-scale dataset for voice activity detection for 6000+ languages},
|
|
||||||
year = {2024},
|
|
||||||
publisher = {GitHub},
|
|
||||||
journal = {GitHub repository},
|
|
||||||
howpublished = {\url{https://github.com/snakers4/silero-vad/datasets/README.md}},
|
|
||||||
email = {hello@silero.ai}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
[^1]: ``Количество уникальных ISO кодов данного датасета не совпадает с фактическим количеством представленных языков, т.к некоторые близкие языки могут кодироваться одним и тем же ISO кодом.``
|
|
||||||
@@ -41,7 +41,7 @@
|
|||||||
" abs_max = np.abs(sound).max()\n",
|
" abs_max = np.abs(sound).max()\n",
|
||||||
" sound = sound.astype('float32')\n",
|
" sound = sound.astype('float32')\n",
|
||||||
" if abs_max > 0:\n",
|
" if abs_max > 0:\n",
|
||||||
" sound *= 1/32768\n",
|
" sound *= 1/abs_max\n",
|
||||||
" sound = sound.squeeze()\n",
|
" sound = sound.squeeze()\n",
|
||||||
" return sound\n",
|
" return sound\n",
|
||||||
"\n",
|
"\n",
|
||||||
|
|||||||
@@ -1,43 +0,0 @@
|
|||||||
# Stream example in C++
|
|
||||||
|
|
||||||
Here's a simple example of the vad model in c++ onnxruntime.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## Requirements
|
|
||||||
|
|
||||||
Code are tested in the environments bellow, feel free to try others.
|
|
||||||
|
|
||||||
- WSL2 + Debian-bullseye (docker)
|
|
||||||
- gcc 12.2.0
|
|
||||||
- onnxruntime-linux-x64-1.12.1
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## Usage
|
|
||||||
|
|
||||||
1. Install gcc 12.2.0, or just pull the docker image with `docker pull gcc:12.2.0-bullseye`
|
|
||||||
|
|
||||||
2. Install onnxruntime-linux-x64-1.12.1
|
|
||||||
|
|
||||||
- Download lib onnxruntime:
|
|
||||||
|
|
||||||
`wget https://github.com/microsoft/onnxruntime/releases/download/v1.12.1/onnxruntime-linux-x64-1.12.1.tgz`
|
|
||||||
|
|
||||||
- Unzip. Assume the path is `/root/onnxruntime-linux-x64-1.12.1`
|
|
||||||
|
|
||||||
3. Modify wav path & Test configs in main function
|
|
||||||
|
|
||||||
`wav::WavReader wav_reader("${path_to_your_wav_file}");`
|
|
||||||
|
|
||||||
test sample rate, frame per ms, threshold...
|
|
||||||
|
|
||||||
4. Build with gcc and run
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# Build
|
|
||||||
g++ silero-vad-onnx.cpp -I /root/onnxruntime-linux-x64-1.12.1/include/ -L /root/onnxruntime-linux-x64-1.12.1/lib/ -lonnxruntime -Wl,-rpath,/root/onnxruntime-linux-x64-1.12.1/lib/ -o test
|
|
||||||
|
|
||||||
# Run
|
|
||||||
./test
|
|
||||||
```
|
|
||||||
@@ -1,478 +0,0 @@
|
|||||||
#include <iostream>
|
|
||||||
#include <vector>
|
|
||||||
#include <sstream>
|
|
||||||
#include <cstring>
|
|
||||||
#include <limits>
|
|
||||||
#include <chrono>
|
|
||||||
#include <memory>
|
|
||||||
#include <string>
|
|
||||||
#include <stdexcept>
|
|
||||||
#include <iostream>
|
|
||||||
#include <string>
|
|
||||||
#include "onnxruntime_cxx_api.h"
|
|
||||||
#include "wav.h"
|
|
||||||
#include <cstdio>
|
|
||||||
#include <cstdarg>
|
|
||||||
#if __cplusplus < 201703L
|
|
||||||
#include <memory>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
//#define __DEBUG_SPEECH_PROB___
|
|
||||||
|
|
||||||
class timestamp_t
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
int start;
|
|
||||||
int end;
|
|
||||||
|
|
||||||
// default + parameterized constructor
|
|
||||||
timestamp_t(int start = -1, int end = -1)
|
|
||||||
: start(start), end(end)
|
|
||||||
{
|
|
||||||
};
|
|
||||||
|
|
||||||
// assignment operator modifies object, therefore non-const
|
|
||||||
timestamp_t& operator=(const timestamp_t& a)
|
|
||||||
{
|
|
||||||
start = a.start;
|
|
||||||
end = a.end;
|
|
||||||
return *this;
|
|
||||||
};
|
|
||||||
|
|
||||||
// equality comparison. doesn't modify object. therefore const.
|
|
||||||
bool operator==(const timestamp_t& a) const
|
|
||||||
{
|
|
||||||
return (start == a.start && end == a.end);
|
|
||||||
};
|
|
||||||
std::string c_str()
|
|
||||||
{
|
|
||||||
//return std::format("timestamp {:08d}, {:08d}", start, end);
|
|
||||||
return format("{start:%08d,end:%08d}", start, end);
|
|
||||||
};
|
|
||||||
private:
|
|
||||||
|
|
||||||
std::string format(const char* fmt, ...)
|
|
||||||
{
|
|
||||||
char buf[256];
|
|
||||||
|
|
||||||
va_list args;
|
|
||||||
va_start(args, fmt);
|
|
||||||
const auto r = std::vsnprintf(buf, sizeof buf, fmt, args);
|
|
||||||
va_end(args);
|
|
||||||
|
|
||||||
if (r < 0)
|
|
||||||
// conversion failed
|
|
||||||
return {};
|
|
||||||
|
|
||||||
const size_t len = r;
|
|
||||||
if (len < sizeof buf)
|
|
||||||
// we fit in the buffer
|
|
||||||
return { buf, len };
|
|
||||||
|
|
||||||
#if __cplusplus >= 201703L
|
|
||||||
// C++17: Create a string and write to its underlying array
|
|
||||||
std::string s(len, '\0');
|
|
||||||
va_start(args, fmt);
|
|
||||||
std::vsnprintf(s.data(), len + 1, fmt, args);
|
|
||||||
va_end(args);
|
|
||||||
|
|
||||||
return s;
|
|
||||||
#else
|
|
||||||
// C++11 or C++14: We need to allocate scratch memory
|
|
||||||
auto vbuf = std::unique_ptr<char[]>(new char[len + 1]);
|
|
||||||
va_start(args, fmt);
|
|
||||||
std::vsnprintf(vbuf.get(), len + 1, fmt, args);
|
|
||||||
va_end(args);
|
|
||||||
|
|
||||||
return { vbuf.get(), len };
|
|
||||||
#endif
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
class VadIterator
|
|
||||||
{
|
|
||||||
private:
|
|
||||||
// OnnxRuntime resources
|
|
||||||
Ort::Env env;
|
|
||||||
Ort::SessionOptions session_options;
|
|
||||||
std::shared_ptr<Ort::Session> session = nullptr;
|
|
||||||
Ort::AllocatorWithDefaultOptions allocator;
|
|
||||||
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeCPU);
|
|
||||||
|
|
||||||
private:
|
|
||||||
void init_engine_threads(int inter_threads, int intra_threads)
|
|
||||||
{
|
|
||||||
// The method should be called in each thread/proc in multi-thread/proc work
|
|
||||||
session_options.SetIntraOpNumThreads(intra_threads);
|
|
||||||
session_options.SetInterOpNumThreads(inter_threads);
|
|
||||||
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
|
|
||||||
};
|
|
||||||
|
|
||||||
void init_onnx_model(const std::wstring& model_path)
|
|
||||||
{
|
|
||||||
// Init threads = 1 for
|
|
||||||
init_engine_threads(1, 1);
|
|
||||||
// Load model
|
|
||||||
session = std::make_shared<Ort::Session>(env, model_path.c_str(), session_options);
|
|
||||||
};
|
|
||||||
|
|
||||||
void reset_states()
|
|
||||||
{
|
|
||||||
// Call reset before each audio start
|
|
||||||
std::memset(_state.data(), 0.0f, _state.size() * sizeof(float));
|
|
||||||
triggered = false;
|
|
||||||
temp_end = 0;
|
|
||||||
current_sample = 0;
|
|
||||||
|
|
||||||
prev_end = next_start = 0;
|
|
||||||
|
|
||||||
speeches.clear();
|
|
||||||
current_speech = timestamp_t();
|
|
||||||
};
|
|
||||||
|
|
||||||
void predict(const std::vector<float> &data)
|
|
||||||
{
|
|
||||||
// Infer
|
|
||||||
// Create ort tensors
|
|
||||||
input.assign(data.begin(), data.end());
|
|
||||||
Ort::Value input_ort = Ort::Value::CreateTensor<float>(
|
|
||||||
memory_info, input.data(), input.size(), input_node_dims, 2);
|
|
||||||
Ort::Value state_ort = Ort::Value::CreateTensor<float>(
|
|
||||||
memory_info, _state.data(), _state.size(), state_node_dims, 3);
|
|
||||||
Ort::Value sr_ort = Ort::Value::CreateTensor<int64_t>(
|
|
||||||
memory_info, sr.data(), sr.size(), sr_node_dims, 1);
|
|
||||||
|
|
||||||
// Clear and add inputs
|
|
||||||
ort_inputs.clear();
|
|
||||||
ort_inputs.emplace_back(std::move(input_ort));
|
|
||||||
ort_inputs.emplace_back(std::move(state_ort));
|
|
||||||
ort_inputs.emplace_back(std::move(sr_ort));
|
|
||||||
|
|
||||||
// Infer
|
|
||||||
ort_outputs = session->Run(
|
|
||||||
Ort::RunOptions{nullptr},
|
|
||||||
input_node_names.data(), ort_inputs.data(), ort_inputs.size(),
|
|
||||||
output_node_names.data(), output_node_names.size());
|
|
||||||
|
|
||||||
// Output probability & update h,c recursively
|
|
||||||
float speech_prob = ort_outputs[0].GetTensorMutableData<float>()[0];
|
|
||||||
float *stateN = ort_outputs[1].GetTensorMutableData<float>();
|
|
||||||
std::memcpy(_state.data(), stateN, size_state * sizeof(float));
|
|
||||||
|
|
||||||
// Push forward sample index
|
|
||||||
current_sample += window_size_samples;
|
|
||||||
|
|
||||||
// Reset temp_end when > threshold
|
|
||||||
if ((speech_prob >= threshold))
|
|
||||||
{
|
|
||||||
#ifdef __DEBUG_SPEECH_PROB___
|
|
||||||
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
|
|
||||||
printf("{ start: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample- window_size_samples);
|
|
||||||
#endif //__DEBUG_SPEECH_PROB___
|
|
||||||
if (temp_end != 0)
|
|
||||||
{
|
|
||||||
temp_end = 0;
|
|
||||||
if (next_start < prev_end)
|
|
||||||
next_start = current_sample - window_size_samples;
|
|
||||||
}
|
|
||||||
if (triggered == false)
|
|
||||||
{
|
|
||||||
triggered = true;
|
|
||||||
|
|
||||||
current_speech.start = current_sample - window_size_samples;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (
|
|
||||||
(triggered == true)
|
|
||||||
&& ((current_sample - current_speech.start) > max_speech_samples)
|
|
||||||
) {
|
|
||||||
if (prev_end > 0) {
|
|
||||||
current_speech.end = prev_end;
|
|
||||||
speeches.push_back(current_speech);
|
|
||||||
current_speech = timestamp_t();
|
|
||||||
|
|
||||||
// previously reached silence(< neg_thres) and is still not speech(< thres)
|
|
||||||
if (next_start < prev_end)
|
|
||||||
triggered = false;
|
|
||||||
else{
|
|
||||||
current_speech.start = next_start;
|
|
||||||
}
|
|
||||||
prev_end = 0;
|
|
||||||
next_start = 0;
|
|
||||||
temp_end = 0;
|
|
||||||
|
|
||||||
}
|
|
||||||
else{
|
|
||||||
current_speech.end = current_sample;
|
|
||||||
speeches.push_back(current_speech);
|
|
||||||
current_speech = timestamp_t();
|
|
||||||
prev_end = 0;
|
|
||||||
next_start = 0;
|
|
||||||
temp_end = 0;
|
|
||||||
triggered = false;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
|
|
||||||
}
|
|
||||||
if ((speech_prob >= (threshold - 0.15)) && (speech_prob < threshold))
|
|
||||||
{
|
|
||||||
if (triggered) {
|
|
||||||
#ifdef __DEBUG_SPEECH_PROB___
|
|
||||||
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
|
|
||||||
printf("{ speeking: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
|
|
||||||
#endif //__DEBUG_SPEECH_PROB___
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
#ifdef __DEBUG_SPEECH_PROB___
|
|
||||||
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
|
|
||||||
printf("{ silence: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
|
|
||||||
#endif //__DEBUG_SPEECH_PROB___
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
// 4) End
|
|
||||||
if ((speech_prob < (threshold - 0.15)))
|
|
||||||
{
|
|
||||||
#ifdef __DEBUG_SPEECH_PROB___
|
|
||||||
float speech = current_sample - window_size_samples - speech_pad_samples; // minus window_size_samples to get precise start time point.
|
|
||||||
printf("{ end: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
|
|
||||||
#endif //__DEBUG_SPEECH_PROB___
|
|
||||||
if (triggered == true)
|
|
||||||
{
|
|
||||||
if (temp_end == 0)
|
|
||||||
{
|
|
||||||
temp_end = current_sample;
|
|
||||||
}
|
|
||||||
if (current_sample - temp_end > min_silence_samples_at_max_speech)
|
|
||||||
prev_end = temp_end;
|
|
||||||
// a. silence < min_slience_samples, continue speaking
|
|
||||||
if ((current_sample - temp_end) < min_silence_samples)
|
|
||||||
{
|
|
||||||
|
|
||||||
}
|
|
||||||
// b. silence >= min_slience_samples, end speaking
|
|
||||||
else
|
|
||||||
{
|
|
||||||
current_speech.end = temp_end;
|
|
||||||
if (current_speech.end - current_speech.start > min_speech_samples)
|
|
||||||
{
|
|
||||||
speeches.push_back(current_speech);
|
|
||||||
current_speech = timestamp_t();
|
|
||||||
prev_end = 0;
|
|
||||||
next_start = 0;
|
|
||||||
temp_end = 0;
|
|
||||||
triggered = false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
// may first windows see end state.
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
public:
|
|
||||||
void process(const std::vector<float>& input_wav)
|
|
||||||
{
|
|
||||||
reset_states();
|
|
||||||
|
|
||||||
audio_length_samples = input_wav.size();
|
|
||||||
|
|
||||||
for (int j = 0; j < audio_length_samples; j += window_size_samples)
|
|
||||||
{
|
|
||||||
if (j + window_size_samples > audio_length_samples)
|
|
||||||
break;
|
|
||||||
std::vector<float> r{ &input_wav[0] + j, &input_wav[0] + j + window_size_samples };
|
|
||||||
predict(r);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (current_speech.start >= 0) {
|
|
||||||
current_speech.end = audio_length_samples;
|
|
||||||
speeches.push_back(current_speech);
|
|
||||||
current_speech = timestamp_t();
|
|
||||||
prev_end = 0;
|
|
||||||
next_start = 0;
|
|
||||||
temp_end = 0;
|
|
||||||
triggered = false;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
void process(const std::vector<float>& input_wav, std::vector<float>& output_wav)
|
|
||||||
{
|
|
||||||
process(input_wav);
|
|
||||||
collect_chunks(input_wav, output_wav);
|
|
||||||
}
|
|
||||||
|
|
||||||
void collect_chunks(const std::vector<float>& input_wav, std::vector<float>& output_wav)
|
|
||||||
{
|
|
||||||
output_wav.clear();
|
|
||||||
for (int i = 0; i < speeches.size(); i++) {
|
|
||||||
#ifdef __DEBUG_SPEECH_PROB___
|
|
||||||
std::cout << speeches[i].c_str() << std::endl;
|
|
||||||
#endif //#ifdef __DEBUG_SPEECH_PROB___
|
|
||||||
std::vector<float> slice(&input_wav[speeches[i].start], &input_wav[speeches[i].end]);
|
|
||||||
output_wav.insert(output_wav.end(),slice.begin(),slice.end());
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
const std::vector<timestamp_t> get_speech_timestamps() const
|
|
||||||
{
|
|
||||||
return speeches;
|
|
||||||
}
|
|
||||||
|
|
||||||
void drop_chunks(const std::vector<float>& input_wav, std::vector<float>& output_wav)
|
|
||||||
{
|
|
||||||
output_wav.clear();
|
|
||||||
int current_start = 0;
|
|
||||||
for (int i = 0; i < speeches.size(); i++) {
|
|
||||||
|
|
||||||
std::vector<float> slice(&input_wav[current_start],&input_wav[speeches[i].start]);
|
|
||||||
output_wav.insert(output_wav.end(), slice.begin(), slice.end());
|
|
||||||
current_start = speeches[i].end;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<float> slice(&input_wav[current_start], &input_wav[input_wav.size()]);
|
|
||||||
output_wav.insert(output_wav.end(), slice.begin(), slice.end());
|
|
||||||
};
|
|
||||||
|
|
||||||
private:
|
|
||||||
// model config
|
|
||||||
int64_t window_size_samples; // Assign when init, support 256 512 768 for 8k; 512 1024 1536 for 16k.
|
|
||||||
int sample_rate; //Assign when init support 16000 or 8000
|
|
||||||
int sr_per_ms; // Assign when init, support 8 or 16
|
|
||||||
float threshold;
|
|
||||||
int min_silence_samples; // sr_per_ms * #ms
|
|
||||||
int min_silence_samples_at_max_speech; // sr_per_ms * #98
|
|
||||||
int min_speech_samples; // sr_per_ms * #ms
|
|
||||||
float max_speech_samples;
|
|
||||||
int speech_pad_samples; // usually a
|
|
||||||
int audio_length_samples;
|
|
||||||
|
|
||||||
// model states
|
|
||||||
bool triggered = false;
|
|
||||||
unsigned int temp_end = 0;
|
|
||||||
unsigned int current_sample = 0;
|
|
||||||
// MAX 4294967295 samples / 8sample per ms / 1000 / 60 = 8947 minutes
|
|
||||||
int prev_end;
|
|
||||||
int next_start = 0;
|
|
||||||
|
|
||||||
//Output timestamp
|
|
||||||
std::vector<timestamp_t> speeches;
|
|
||||||
timestamp_t current_speech;
|
|
||||||
|
|
||||||
|
|
||||||
// Onnx model
|
|
||||||
// Inputs
|
|
||||||
std::vector<Ort::Value> ort_inputs;
|
|
||||||
|
|
||||||
std::vector<const char *> input_node_names = {"input", "state", "sr"};
|
|
||||||
std::vector<float> input;
|
|
||||||
unsigned int size_state = 2 * 1 * 128; // It's FIXED.
|
|
||||||
std::vector<float> _state;
|
|
||||||
std::vector<int64_t> sr;
|
|
||||||
|
|
||||||
int64_t input_node_dims[2] = {};
|
|
||||||
const int64_t state_node_dims[3] = {2, 1, 128};
|
|
||||||
const int64_t sr_node_dims[1] = {1};
|
|
||||||
|
|
||||||
// Outputs
|
|
||||||
std::vector<Ort::Value> ort_outputs;
|
|
||||||
std::vector<const char *> output_node_names = {"output", "stateN"};
|
|
||||||
|
|
||||||
public:
|
|
||||||
// Construction
|
|
||||||
VadIterator(const std::wstring ModelPath,
|
|
||||||
int Sample_rate = 16000, int windows_frame_size = 32,
|
|
||||||
float Threshold = 0.5, int min_silence_duration_ms = 0,
|
|
||||||
int speech_pad_ms = 32, int min_speech_duration_ms = 32,
|
|
||||||
float max_speech_duration_s = std::numeric_limits<float>::infinity())
|
|
||||||
{
|
|
||||||
init_onnx_model(ModelPath);
|
|
||||||
threshold = Threshold;
|
|
||||||
sample_rate = Sample_rate;
|
|
||||||
sr_per_ms = sample_rate / 1000;
|
|
||||||
|
|
||||||
window_size_samples = windows_frame_size * sr_per_ms;
|
|
||||||
|
|
||||||
min_speech_samples = sr_per_ms * min_speech_duration_ms;
|
|
||||||
speech_pad_samples = sr_per_ms * speech_pad_ms;
|
|
||||||
|
|
||||||
max_speech_samples = (
|
|
||||||
sample_rate * max_speech_duration_s
|
|
||||||
- window_size_samples
|
|
||||||
- 2 * speech_pad_samples
|
|
||||||
);
|
|
||||||
|
|
||||||
min_silence_samples = sr_per_ms * min_silence_duration_ms;
|
|
||||||
min_silence_samples_at_max_speech = sr_per_ms * 98;
|
|
||||||
|
|
||||||
input.resize(window_size_samples);
|
|
||||||
input_node_dims[0] = 1;
|
|
||||||
input_node_dims[1] = window_size_samples;
|
|
||||||
|
|
||||||
_state.resize(size_state);
|
|
||||||
sr.resize(1);
|
|
||||||
sr[0] = sample_rate;
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
int main()
|
|
||||||
{
|
|
||||||
std::vector<timestamp_t> stamps;
|
|
||||||
|
|
||||||
// Read wav
|
|
||||||
wav::WavReader wav_reader("recorder.wav"); //16000,1,32float
|
|
||||||
std::vector<float> input_wav(wav_reader.num_samples());
|
|
||||||
std::vector<float> output_wav;
|
|
||||||
|
|
||||||
for (int i = 0; i < wav_reader.num_samples(); i++)
|
|
||||||
{
|
|
||||||
input_wav[i] = static_cast<float>(*(wav_reader.data() + i));
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// ===== Test configs =====
|
|
||||||
std::wstring path = L"silero_vad.onnx";
|
|
||||||
VadIterator vad(path);
|
|
||||||
|
|
||||||
// ==============================================
|
|
||||||
// ==== = Example 1 of full function =====
|
|
||||||
// ==============================================
|
|
||||||
vad.process(input_wav);
|
|
||||||
|
|
||||||
// 1.a get_speech_timestamps
|
|
||||||
stamps = vad.get_speech_timestamps();
|
|
||||||
for (int i = 0; i < stamps.size(); i++) {
|
|
||||||
|
|
||||||
std::cout << stamps[i].c_str() << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
// 1.b collect_chunks output wav
|
|
||||||
vad.collect_chunks(input_wav, output_wav);
|
|
||||||
|
|
||||||
// 1.c drop_chunks output wav
|
|
||||||
vad.drop_chunks(input_wav, output_wav);
|
|
||||||
|
|
||||||
// ==============================================
|
|
||||||
// ===== Example 2 of simple full function =====
|
|
||||||
// ==============================================
|
|
||||||
vad.process(input_wav, output_wav);
|
|
||||||
|
|
||||||
stamps = vad.get_speech_timestamps();
|
|
||||||
for (int i = 0; i < stamps.size(); i++) {
|
|
||||||
|
|
||||||
std::cout << stamps[i].c_str() << std::endl;
|
|
||||||
}
|
|
||||||
|
|
||||||
// ==============================================
|
|
||||||
// ===== Example 3 of full function =====
|
|
||||||
// ==============================================
|
|
||||||
for(int i = 0; i<2; i++)
|
|
||||||
vad.process(input_wav, output_wav);
|
|
||||||
}
|
|
||||||
@@ -1,235 +0,0 @@
|
|||||||
// Copyright (c) 2016 Personal (Binbin Zhang)
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
#ifndef FRONTEND_WAV_H_
|
|
||||||
#define FRONTEND_WAV_H_
|
|
||||||
|
|
||||||
#include <assert.h>
|
|
||||||
#include <stdint.h>
|
|
||||||
#include <stdio.h>
|
|
||||||
#include <stdlib.h>
|
|
||||||
#include <string.h>
|
|
||||||
|
|
||||||
#include <string>
|
|
||||||
|
|
||||||
// #include "utils/log.h"
|
|
||||||
|
|
||||||
namespace wav {
|
|
||||||
|
|
||||||
struct WavHeader {
|
|
||||||
char riff[4]; // "riff"
|
|
||||||
unsigned int size;
|
|
||||||
char wav[4]; // "WAVE"
|
|
||||||
char fmt[4]; // "fmt "
|
|
||||||
unsigned int fmt_size;
|
|
||||||
uint16_t format;
|
|
||||||
uint16_t channels;
|
|
||||||
unsigned int sample_rate;
|
|
||||||
unsigned int bytes_per_second;
|
|
||||||
uint16_t block_size;
|
|
||||||
uint16_t bit;
|
|
||||||
char data[4]; // "data"
|
|
||||||
unsigned int data_size;
|
|
||||||
};
|
|
||||||
|
|
||||||
class WavReader {
|
|
||||||
public:
|
|
||||||
WavReader() : data_(nullptr) {}
|
|
||||||
explicit WavReader(const std::string& filename) { Open(filename); }
|
|
||||||
|
|
||||||
bool Open(const std::string& filename) {
|
|
||||||
FILE* fp = fopen(filename.c_str(), "rb"); //文件读取
|
|
||||||
if (NULL == fp) {
|
|
||||||
std::cout << "Error in read " << filename;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
WavHeader header;
|
|
||||||
fread(&header, 1, sizeof(header), fp);
|
|
||||||
if (header.fmt_size < 16) {
|
|
||||||
printf("WaveData: expect PCM format data "
|
|
||||||
"to have fmt chunk of at least size 16.\n");
|
|
||||||
return false;
|
|
||||||
} else if (header.fmt_size > 16) {
|
|
||||||
int offset = 44 - 8 + header.fmt_size - 16;
|
|
||||||
fseek(fp, offset, SEEK_SET);
|
|
||||||
fread(header.data, 8, sizeof(char), fp);
|
|
||||||
}
|
|
||||||
// check "riff" "WAVE" "fmt " "data"
|
|
||||||
|
|
||||||
// Skip any sub-chunks between "fmt" and "data". Usually there will
|
|
||||||
// be a single "fact" sub chunk, but on Windows there can also be a
|
|
||||||
// "list" sub chunk.
|
|
||||||
while (0 != strncmp(header.data, "data", 4)) {
|
|
||||||
// We will just ignore the data in these chunks.
|
|
||||||
fseek(fp, header.data_size, SEEK_CUR);
|
|
||||||
// read next sub chunk
|
|
||||||
fread(header.data, 8, sizeof(char), fp);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (header.data_size == 0) {
|
|
||||||
int offset = ftell(fp);
|
|
||||||
fseek(fp, 0, SEEK_END);
|
|
||||||
header.data_size = ftell(fp) - offset;
|
|
||||||
fseek(fp, offset, SEEK_SET);
|
|
||||||
}
|
|
||||||
|
|
||||||
num_channel_ = header.channels;
|
|
||||||
sample_rate_ = header.sample_rate;
|
|
||||||
bits_per_sample_ = header.bit;
|
|
||||||
int num_data = header.data_size / (bits_per_sample_ / 8);
|
|
||||||
data_ = new float[num_data]; // Create 1-dim array
|
|
||||||
num_samples_ = num_data / num_channel_;
|
|
||||||
|
|
||||||
std::cout << "num_channel_ :" << num_channel_ << std::endl;
|
|
||||||
std::cout << "sample_rate_ :" << sample_rate_ << std::endl;
|
|
||||||
std::cout << "bits_per_sample_:" << bits_per_sample_ << std::endl;
|
|
||||||
std::cout << "num_samples :" << num_data << std::endl;
|
|
||||||
std::cout << "num_data_size :" << header.data_size << std::endl;
|
|
||||||
|
|
||||||
switch (bits_per_sample_) {
|
|
||||||
case 8: {
|
|
||||||
char sample;
|
|
||||||
for (int i = 0; i < num_data; ++i) {
|
|
||||||
fread(&sample, 1, sizeof(char), fp);
|
|
||||||
data_[i] = static_cast<float>(sample) / 32768;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
case 16: {
|
|
||||||
int16_t sample;
|
|
||||||
for (int i = 0; i < num_data; ++i) {
|
|
||||||
fread(&sample, 1, sizeof(int16_t), fp);
|
|
||||||
data_[i] = static_cast<float>(sample) / 32768;
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
case 32:
|
|
||||||
{
|
|
||||||
if (header.format == 1) //S32
|
|
||||||
{
|
|
||||||
int sample;
|
|
||||||
for (int i = 0; i < num_data; ++i) {
|
|
||||||
fread(&sample, 1, sizeof(int), fp);
|
|
||||||
data_[i] = static_cast<float>(sample) / 32768;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else if (header.format == 3) // IEEE-float
|
|
||||||
{
|
|
||||||
float sample;
|
|
||||||
for (int i = 0; i < num_data; ++i) {
|
|
||||||
fread(&sample, 1, sizeof(float), fp);
|
|
||||||
data_[i] = static_cast<float>(sample);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
printf("unsupported quantization bits\n");
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
default:
|
|
||||||
printf("unsupported quantization bits\n");
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
fclose(fp);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
int num_channel() const { return num_channel_; }
|
|
||||||
int sample_rate() const { return sample_rate_; }
|
|
||||||
int bits_per_sample() const { return bits_per_sample_; }
|
|
||||||
int num_samples() const { return num_samples_; }
|
|
||||||
|
|
||||||
~WavReader() {
|
|
||||||
delete[] data_;
|
|
||||||
}
|
|
||||||
|
|
||||||
const float* data() const { return data_; }
|
|
||||||
|
|
||||||
private:
|
|
||||||
int num_channel_;
|
|
||||||
int sample_rate_;
|
|
||||||
int bits_per_sample_;
|
|
||||||
int num_samples_; // sample points per channel
|
|
||||||
float* data_;
|
|
||||||
};
|
|
||||||
|
|
||||||
class WavWriter {
|
|
||||||
public:
|
|
||||||
WavWriter(const float* data, int num_samples, int num_channel,
|
|
||||||
int sample_rate, int bits_per_sample)
|
|
||||||
: data_(data),
|
|
||||||
num_samples_(num_samples),
|
|
||||||
num_channel_(num_channel),
|
|
||||||
sample_rate_(sample_rate),
|
|
||||||
bits_per_sample_(bits_per_sample) {}
|
|
||||||
|
|
||||||
void Write(const std::string& filename) {
|
|
||||||
FILE* fp = fopen(filename.c_str(), "w");
|
|
||||||
// init char 'riff' 'WAVE' 'fmt ' 'data'
|
|
||||||
WavHeader header;
|
|
||||||
char wav_header[44] = {0x52, 0x49, 0x46, 0x46, 0x00, 0x00, 0x00, 0x00, 0x57,
|
|
||||||
0x41, 0x56, 0x45, 0x66, 0x6d, 0x74, 0x20, 0x10, 0x00,
|
|
||||||
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
||||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
||||||
0x64, 0x61, 0x74, 0x61, 0x00, 0x00, 0x00, 0x00};
|
|
||||||
memcpy(&header, wav_header, sizeof(header));
|
|
||||||
header.channels = num_channel_;
|
|
||||||
header.bit = bits_per_sample_;
|
|
||||||
header.sample_rate = sample_rate_;
|
|
||||||
header.data_size = num_samples_ * num_channel_ * (bits_per_sample_ / 8);
|
|
||||||
header.size = sizeof(header) - 8 + header.data_size;
|
|
||||||
header.bytes_per_second =
|
|
||||||
sample_rate_ * num_channel_ * (bits_per_sample_ / 8);
|
|
||||||
header.block_size = num_channel_ * (bits_per_sample_ / 8);
|
|
||||||
|
|
||||||
fwrite(&header, 1, sizeof(header), fp);
|
|
||||||
|
|
||||||
for (int i = 0; i < num_samples_; ++i) {
|
|
||||||
for (int j = 0; j < num_channel_; ++j) {
|
|
||||||
switch (bits_per_sample_) {
|
|
||||||
case 8: {
|
|
||||||
char sample = static_cast<char>(data_[i * num_channel_ + j]);
|
|
||||||
fwrite(&sample, 1, sizeof(sample), fp);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
case 16: {
|
|
||||||
int16_t sample = static_cast<int16_t>(data_[i * num_channel_ + j]);
|
|
||||||
fwrite(&sample, 1, sizeof(sample), fp);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
case 32: {
|
|
||||||
int sample = static_cast<int>(data_[i * num_channel_ + j]);
|
|
||||||
fwrite(&sample, 1, sizeof(sample), fp);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
fclose(fp);
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
const float* data_;
|
|
||||||
int num_samples_; // total float points in data_
|
|
||||||
int num_channel_;
|
|
||||||
int sample_rate_;
|
|
||||||
int bits_per_sample_;
|
|
||||||
};
|
|
||||||
|
|
||||||
} // namespace wenet
|
|
||||||
|
|
||||||
#endif // FRONTEND_WAV_H_
|
|
||||||
@@ -1,19 +0,0 @@
|
|||||||
## Golang Example
|
|
||||||
|
|
||||||
This is a sample program of how to run speech detection using `silero-vad` from Golang (CGO + ONNX Runtime).
|
|
||||||
|
|
||||||
### Requirements
|
|
||||||
|
|
||||||
- Golang >= v1.21
|
|
||||||
- ONNX Runtime
|
|
||||||
|
|
||||||
### Usage
|
|
||||||
|
|
||||||
```sh
|
|
||||||
go run ./cmd/main.go test.wav
|
|
||||||
```
|
|
||||||
|
|
||||||
> **_Note_**
|
|
||||||
>
|
|
||||||
> Make sure you have the ONNX Runtime library and C headers installed in your path.
|
|
||||||
|
|
||||||
@@ -1,63 +0,0 @@
|
|||||||
package main
|
|
||||||
|
|
||||||
import (
|
|
||||||
"log"
|
|
||||||
"os"
|
|
||||||
|
|
||||||
"github.com/streamer45/silero-vad-go/speech"
|
|
||||||
|
|
||||||
"github.com/go-audio/wav"
|
|
||||||
)
|
|
||||||
|
|
||||||
func main() {
|
|
||||||
sd, err := speech.NewDetector(speech.DetectorConfig{
|
|
||||||
ModelPath: "../../files/silero_vad.onnx",
|
|
||||||
SampleRate: 16000,
|
|
||||||
Threshold: 0.5,
|
|
||||||
MinSilenceDurationMs: 0,
|
|
||||||
SpeechPadMs: 0,
|
|
||||||
})
|
|
||||||
if err != nil {
|
|
||||||
log.Fatalf("failed to create speech detector: %s", err)
|
|
||||||
}
|
|
||||||
|
|
||||||
if len(os.Args) != 2 {
|
|
||||||
log.Fatalf("invalid arguments provided: expecting one file path")
|
|
||||||
}
|
|
||||||
|
|
||||||
f, err := os.Open(os.Args[1])
|
|
||||||
if err != nil {
|
|
||||||
log.Fatalf("failed to open sample audio file: %s", err)
|
|
||||||
}
|
|
||||||
defer f.Close()
|
|
||||||
|
|
||||||
dec := wav.NewDecoder(f)
|
|
||||||
|
|
||||||
if ok := dec.IsValidFile(); !ok {
|
|
||||||
log.Fatalf("invalid WAV file")
|
|
||||||
}
|
|
||||||
|
|
||||||
buf, err := dec.FullPCMBuffer()
|
|
||||||
if err != nil {
|
|
||||||
log.Fatalf("failed to get PCM buffer")
|
|
||||||
}
|
|
||||||
|
|
||||||
pcmBuf := buf.AsFloat32Buffer()
|
|
||||||
|
|
||||||
segments, err := sd.Detect(pcmBuf.Data)
|
|
||||||
if err != nil {
|
|
||||||
log.Fatalf("Detect failed: %s", err)
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, s := range segments {
|
|
||||||
log.Printf("speech starts at %0.2fs", s.SpeechStartAt)
|
|
||||||
if s.SpeechEndAt > 0 {
|
|
||||||
log.Printf("speech ends at %0.2fs", s.SpeechEndAt)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
err = sd.Destroy()
|
|
||||||
if err != nil {
|
|
||||||
log.Fatalf("failed to destroy detector: %s", err)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -1,13 +0,0 @@
|
|||||||
module silero
|
|
||||||
|
|
||||||
go 1.21.4
|
|
||||||
|
|
||||||
require (
|
|
||||||
github.com/go-audio/wav v1.1.0
|
|
||||||
github.com/streamer45/silero-vad-go v0.2.0
|
|
||||||
)
|
|
||||||
|
|
||||||
require (
|
|
||||||
github.com/go-audio/audio v1.0.0 // indirect
|
|
||||||
github.com/go-audio/riff v1.0.0 // indirect
|
|
||||||
)
|
|
||||||
@@ -1,16 +0,0 @@
|
|||||||
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
|
|
||||||
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
|
||||||
github.com/go-audio/audio v1.0.0 h1:zS9vebldgbQqktK4H0lUqWrG8P0NxCJVqcj7ZpNnwd4=
|
|
||||||
github.com/go-audio/audio v1.0.0/go.mod h1:6uAu0+H2lHkwdGsAY+j2wHPNPpPoeg5AaEFh9FlA+Zs=
|
|
||||||
github.com/go-audio/riff v1.0.0 h1:d8iCGbDvox9BfLagY94fBynxSPHO80LmZCaOsmKxokA=
|
|
||||||
github.com/go-audio/riff v1.0.0/go.mod h1:l3cQwc85y79NQFCRB7TiPoNiaijp6q8Z0Uv38rVG498=
|
|
||||||
github.com/go-audio/wav v1.1.0 h1:jQgLtbqBzY7G+BM8fXF7AHUk1uHUviWS4X39d5rsL2g=
|
|
||||||
github.com/go-audio/wav v1.1.0/go.mod h1:mpe9qfwbScEbkd8uybLuIpTgHyrISw/OTuvjUW2iGtE=
|
|
||||||
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
|
|
||||||
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
|
|
||||||
github.com/streamer45/silero-vad-go v0.2.0 h1:bbRTa6cQuc7VI88y0qicx375UyWoxE6wlVOF+mUg0+g=
|
|
||||||
github.com/streamer45/silero-vad-go v0.2.0/go.mod h1:B+2FXs/5fZ6pzl6unUZYhZqkYdOB+3saBVzjOzdZnUs=
|
|
||||||
github.com/stretchr/testify v1.8.4 h1:CcVxjf3Q8PM0mHUKJCdn+eZZtm5yQwehR5yeSVQQcUk=
|
|
||||||
github.com/stretchr/testify v1.8.4/go.mod h1:sz/lmYIOXD/1dqDmKjjqLyZ2RngseejIcXlSw2iwfAo=
|
|
||||||
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
|
|
||||||
gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
|
|
||||||
@@ -1,30 +0,0 @@
|
|||||||
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
|
||||||
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
|
|
||||||
<modelVersion>4.0.0</modelVersion>
|
|
||||||
|
|
||||||
<groupId>org.example</groupId>
|
|
||||||
<artifactId>java-example</artifactId>
|
|
||||||
<version>1.0-SNAPSHOT</version>
|
|
||||||
<packaging>jar</packaging>
|
|
||||||
|
|
||||||
<name>sliero-vad-example</name>
|
|
||||||
<url>http://maven.apache.org</url>
|
|
||||||
|
|
||||||
<properties>
|
|
||||||
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
|
|
||||||
</properties>
|
|
||||||
|
|
||||||
<dependencies>
|
|
||||||
<dependency>
|
|
||||||
<groupId>junit</groupId>
|
|
||||||
<artifactId>junit</artifactId>
|
|
||||||
<version>3.8.1</version>
|
|
||||||
<scope>test</scope>
|
|
||||||
</dependency>
|
|
||||||
<dependency>
|
|
||||||
<groupId>com.microsoft.onnxruntime</groupId>
|
|
||||||
<artifactId>onnxruntime</artifactId>
|
|
||||||
<version>1.16.0-rc1</version>
|
|
||||||
</dependency>
|
|
||||||
</dependencies>
|
|
||||||
</project>
|
|
||||||
@@ -1,69 +0,0 @@
|
|||||||
package org.example;
|
|
||||||
|
|
||||||
import ai.onnxruntime.OrtException;
|
|
||||||
import javax.sound.sampled.*;
|
|
||||||
import java.util.Map;
|
|
||||||
|
|
||||||
public class App {
|
|
||||||
|
|
||||||
private static final String MODEL_PATH = "src/main/resources/silero_vad.onnx";
|
|
||||||
private static final int SAMPLE_RATE = 16000;
|
|
||||||
private static final float START_THRESHOLD = 0.6f;
|
|
||||||
private static final float END_THRESHOLD = 0.45f;
|
|
||||||
private static final int MIN_SILENCE_DURATION_MS = 600;
|
|
||||||
private static final int SPEECH_PAD_MS = 500;
|
|
||||||
private static final int WINDOW_SIZE_SAMPLES = 2048;
|
|
||||||
|
|
||||||
public static void main(String[] args) {
|
|
||||||
// Initialize the Voice Activity Detector
|
|
||||||
SlieroVadDetector vadDetector;
|
|
||||||
try {
|
|
||||||
vadDetector = new SlieroVadDetector(MODEL_PATH, START_THRESHOLD, END_THRESHOLD, SAMPLE_RATE, MIN_SILENCE_DURATION_MS, SPEECH_PAD_MS);
|
|
||||||
} catch (OrtException e) {
|
|
||||||
System.err.println("Error initializing the VAD detector: " + e.getMessage());
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Set audio format
|
|
||||||
AudioFormat format = new AudioFormat(SAMPLE_RATE, 16, 1, true, false);
|
|
||||||
DataLine.Info info = new DataLine.Info(TargetDataLine.class, format);
|
|
||||||
|
|
||||||
// Get the target data line and open it with the specified format
|
|
||||||
TargetDataLine targetDataLine;
|
|
||||||
try {
|
|
||||||
targetDataLine = (TargetDataLine) AudioSystem.getLine(info);
|
|
||||||
targetDataLine.open(format);
|
|
||||||
targetDataLine.start();
|
|
||||||
} catch (LineUnavailableException e) {
|
|
||||||
System.err.println("Error opening target data line: " + e.getMessage());
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Main loop to continuously read data and apply Voice Activity Detection
|
|
||||||
while (targetDataLine.isOpen()) {
|
|
||||||
byte[] data = new byte[WINDOW_SIZE_SAMPLES];
|
|
||||||
|
|
||||||
int numBytesRead = targetDataLine.read(data, 0, data.length);
|
|
||||||
if (numBytesRead <= 0) {
|
|
||||||
System.err.println("Error reading data from target data line.");
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Apply the Voice Activity Detector to the data and get the result
|
|
||||||
Map<String, Double> detectResult;
|
|
||||||
try {
|
|
||||||
detectResult = vadDetector.apply(data, true);
|
|
||||||
} catch (Exception e) {
|
|
||||||
System.err.println("Error applying VAD detector: " + e.getMessage());
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!detectResult.isEmpty()) {
|
|
||||||
System.out.println(detectResult);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Close the target data line to release audio resources
|
|
||||||
targetDataLine.close();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -1,145 +0,0 @@
|
|||||||
package org.example;
|
|
||||||
|
|
||||||
import ai.onnxruntime.OrtException;
|
|
||||||
|
|
||||||
import java.math.BigDecimal;
|
|
||||||
import java.math.RoundingMode;
|
|
||||||
import java.util.Collections;
|
|
||||||
import java.util.HashMap;
|
|
||||||
import java.util.Map;
|
|
||||||
|
|
||||||
|
|
||||||
public class SlieroVadDetector {
|
|
||||||
// OnnxModel model used for speech processing
|
|
||||||
private final SlieroVadOnnxModel model;
|
|
||||||
// Threshold for speech start
|
|
||||||
private final float startThreshold;
|
|
||||||
// Threshold for speech end
|
|
||||||
private final float endThreshold;
|
|
||||||
// Sampling rate
|
|
||||||
private final int samplingRate;
|
|
||||||
// Minimum number of silence samples to determine the end threshold of speech
|
|
||||||
private final float minSilenceSamples;
|
|
||||||
// Additional number of samples for speech start or end to calculate speech start or end time
|
|
||||||
private final float speechPadSamples;
|
|
||||||
// Whether in the triggered state (i.e. whether speech is being detected)
|
|
||||||
private boolean triggered;
|
|
||||||
// Temporarily stored number of speech end samples
|
|
||||||
private int tempEnd;
|
|
||||||
// Number of samples currently being processed
|
|
||||||
private int currentSample;
|
|
||||||
|
|
||||||
|
|
||||||
public SlieroVadDetector(String modelPath,
|
|
||||||
float startThreshold,
|
|
||||||
float endThreshold,
|
|
||||||
int samplingRate,
|
|
||||||
int minSilenceDurationMs,
|
|
||||||
int speechPadMs) throws OrtException {
|
|
||||||
// Check if the sampling rate is 8000 or 16000, if not, throw an exception
|
|
||||||
if (samplingRate != 8000 && samplingRate != 16000) {
|
|
||||||
throw new IllegalArgumentException("does not support sampling rates other than [8000, 16000]");
|
|
||||||
}
|
|
||||||
|
|
||||||
// Initialize the parameters
|
|
||||||
this.model = new SlieroVadOnnxModel(modelPath);
|
|
||||||
this.startThreshold = startThreshold;
|
|
||||||
this.endThreshold = endThreshold;
|
|
||||||
this.samplingRate = samplingRate;
|
|
||||||
this.minSilenceSamples = samplingRate * minSilenceDurationMs / 1000f;
|
|
||||||
this.speechPadSamples = samplingRate * speechPadMs / 1000f;
|
|
||||||
// Reset the state
|
|
||||||
reset();
|
|
||||||
}
|
|
||||||
|
|
||||||
// Method to reset the state, including the model state, trigger state, temporary end time, and current sample count
|
|
||||||
public void reset() {
|
|
||||||
model.resetStates();
|
|
||||||
triggered = false;
|
|
||||||
tempEnd = 0;
|
|
||||||
currentSample = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
// apply method for processing the audio array, returning possible speech start or end times
|
|
||||||
public Map<String, Double> apply(byte[] data, boolean returnSeconds) {
|
|
||||||
|
|
||||||
// Convert the byte array to a float array
|
|
||||||
float[] audioData = new float[data.length / 2];
|
|
||||||
for (int i = 0; i < audioData.length; i++) {
|
|
||||||
audioData[i] = ((data[i * 2] & 0xff) | (data[i * 2 + 1] << 8)) / 32767.0f;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Get the length of the audio array as the window size
|
|
||||||
int windowSizeSamples = audioData.length;
|
|
||||||
// Update the current sample count
|
|
||||||
currentSample += windowSizeSamples;
|
|
||||||
|
|
||||||
// Call the model to get the prediction probability of speech
|
|
||||||
float speechProb = 0;
|
|
||||||
try {
|
|
||||||
speechProb = model.call(new float[][]{audioData}, samplingRate)[0];
|
|
||||||
} catch (OrtException e) {
|
|
||||||
throw new RuntimeException(e);
|
|
||||||
}
|
|
||||||
|
|
||||||
// If the speech probability is greater than the threshold and the temporary end time is not 0, reset the temporary end time
|
|
||||||
// This indicates that the speech duration has exceeded expectations and needs to recalculate the end time
|
|
||||||
if (speechProb >= startThreshold && tempEnd != 0) {
|
|
||||||
tempEnd = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
// If the speech probability is greater than the threshold and not in the triggered state, set to triggered state and calculate the speech start time
|
|
||||||
if (speechProb >= startThreshold && !triggered) {
|
|
||||||
triggered = true;
|
|
||||||
int speechStart = (int) (currentSample - speechPadSamples);
|
|
||||||
speechStart = Math.max(speechStart, 0);
|
|
||||||
Map<String, Double> result = new HashMap<>();
|
|
||||||
// Decide whether to return the result in seconds or sample count based on the returnSeconds parameter
|
|
||||||
if (returnSeconds) {
|
|
||||||
double speechStartSeconds = speechStart / (double) samplingRate;
|
|
||||||
double roundedSpeechStart = BigDecimal.valueOf(speechStartSeconds).setScale(1, RoundingMode.HALF_UP).doubleValue();
|
|
||||||
result.put("start", roundedSpeechStart);
|
|
||||||
} else {
|
|
||||||
result.put("start", (double) speechStart);
|
|
||||||
}
|
|
||||||
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
// If the speech probability is less than a certain threshold and in the triggered state, calculate the speech end time
|
|
||||||
if (speechProb < endThreshold && triggered) {
|
|
||||||
// Initialize or update the temporary end time
|
|
||||||
if (tempEnd == 0) {
|
|
||||||
tempEnd = currentSample;
|
|
||||||
}
|
|
||||||
// If the number of silence samples between the current sample and the temporary end time is less than the minimum silence samples, return null
|
|
||||||
// This indicates that it is not yet possible to determine whether the speech has ended
|
|
||||||
if (currentSample - tempEnd < minSilenceSamples) {
|
|
||||||
return Collections.emptyMap();
|
|
||||||
} else {
|
|
||||||
// Calculate the speech end time, reset the trigger state and temporary end time
|
|
||||||
int speechEnd = (int) (tempEnd + speechPadSamples);
|
|
||||||
tempEnd = 0;
|
|
||||||
triggered = false;
|
|
||||||
Map<String, Double> result = new HashMap<>();
|
|
||||||
|
|
||||||
if (returnSeconds) {
|
|
||||||
double speechEndSeconds = speechEnd / (double) samplingRate;
|
|
||||||
double roundedSpeechEnd = BigDecimal.valueOf(speechEndSeconds).setScale(1, RoundingMode.HALF_UP).doubleValue();
|
|
||||||
result.put("end", roundedSpeechEnd);
|
|
||||||
} else {
|
|
||||||
result.put("end", (double) speechEnd);
|
|
||||||
}
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// If the above conditions are not met, return null by default
|
|
||||||
return Collections.emptyMap();
|
|
||||||
}
|
|
||||||
|
|
||||||
public void close() throws OrtException {
|
|
||||||
reset();
|
|
||||||
model.close();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -1,180 +0,0 @@
|
|||||||
package org.example;
|
|
||||||
|
|
||||||
import ai.onnxruntime.OnnxTensor;
|
|
||||||
import ai.onnxruntime.OrtEnvironment;
|
|
||||||
import ai.onnxruntime.OrtException;
|
|
||||||
import ai.onnxruntime.OrtSession;
|
|
||||||
import java.util.Arrays;
|
|
||||||
import java.util.HashMap;
|
|
||||||
import java.util.List;
|
|
||||||
import java.util.Map;
|
|
||||||
|
|
||||||
public class SlieroVadOnnxModel {
|
|
||||||
// Define private variable OrtSession
|
|
||||||
private final OrtSession session;
|
|
||||||
private float[][][] h;
|
|
||||||
private float[][][] c;
|
|
||||||
// Define the last sample rate
|
|
||||||
private int lastSr = 0;
|
|
||||||
// Define the last batch size
|
|
||||||
private int lastBatchSize = 0;
|
|
||||||
// Define a list of supported sample rates
|
|
||||||
private static final List<Integer> SAMPLE_RATES = Arrays.asList(8000, 16000);
|
|
||||||
|
|
||||||
// Constructor
|
|
||||||
public SlieroVadOnnxModel(String modelPath) throws OrtException {
|
|
||||||
// Get the ONNX runtime environment
|
|
||||||
OrtEnvironment env = OrtEnvironment.getEnvironment();
|
|
||||||
// Create an ONNX session options object
|
|
||||||
OrtSession.SessionOptions opts = new OrtSession.SessionOptions();
|
|
||||||
// Set the InterOp thread count to 1, InterOp threads are used for parallel processing of different computation graph operations
|
|
||||||
opts.setInterOpNumThreads(1);
|
|
||||||
// Set the IntraOp thread count to 1, IntraOp threads are used for parallel processing within a single operation
|
|
||||||
opts.setIntraOpNumThreads(1);
|
|
||||||
// Add a CPU device, setting to false disables CPU execution optimization
|
|
||||||
opts.addCPU(true);
|
|
||||||
// Create an ONNX session using the environment, model path, and options
|
|
||||||
session = env.createSession(modelPath, opts);
|
|
||||||
// Reset states
|
|
||||||
resetStates();
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Reset states
|
|
||||||
*/
|
|
||||||
void resetStates() {
|
|
||||||
h = new float[2][1][64];
|
|
||||||
c = new float[2][1][64];
|
|
||||||
lastSr = 0;
|
|
||||||
lastBatchSize = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
public void close() throws OrtException {
|
|
||||||
session.close();
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Define inner class ValidationResult
|
|
||||||
*/
|
|
||||||
public static class ValidationResult {
|
|
||||||
public final float[][] x;
|
|
||||||
public final int sr;
|
|
||||||
|
|
||||||
// Constructor
|
|
||||||
public ValidationResult(float[][] x, int sr) {
|
|
||||||
this.x = x;
|
|
||||||
this.sr = sr;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Function to validate input data
|
|
||||||
*/
|
|
||||||
private ValidationResult validateInput(float[][] x, int sr) {
|
|
||||||
// Process the input data with dimension 1
|
|
||||||
if (x.length == 1) {
|
|
||||||
x = new float[][]{x[0]};
|
|
||||||
}
|
|
||||||
// Throw an exception when the input data dimension is greater than 2
|
|
||||||
if (x.length > 2) {
|
|
||||||
throw new IllegalArgumentException("Incorrect audio data dimension: " + x[0].length);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Process the input data when the sample rate is not equal to 16000 and is a multiple of 16000
|
|
||||||
if (sr != 16000 && (sr % 16000 == 0)) {
|
|
||||||
int step = sr / 16000;
|
|
||||||
float[][] reducedX = new float[x.length][];
|
|
||||||
|
|
||||||
for (int i = 0; i < x.length; i++) {
|
|
||||||
float[] current = x[i];
|
|
||||||
float[] newArr = new float[(current.length + step - 1) / step];
|
|
||||||
|
|
||||||
for (int j = 0, index = 0; j < current.length; j += step, index++) {
|
|
||||||
newArr[index] = current[j];
|
|
||||||
}
|
|
||||||
|
|
||||||
reducedX[i] = newArr;
|
|
||||||
}
|
|
||||||
|
|
||||||
x = reducedX;
|
|
||||||
sr = 16000;
|
|
||||||
}
|
|
||||||
|
|
||||||
// If the sample rate is not in the list of supported sample rates, throw an exception
|
|
||||||
if (!SAMPLE_RATES.contains(sr)) {
|
|
||||||
throw new IllegalArgumentException("Only supports sample rates " + SAMPLE_RATES + " (or multiples of 16000)");
|
|
||||||
}
|
|
||||||
|
|
||||||
// If the input audio block is too short, throw an exception
|
|
||||||
if (((float) sr) / x[0].length > 31.25) {
|
|
||||||
throw new IllegalArgumentException("Input audio is too short");
|
|
||||||
}
|
|
||||||
|
|
||||||
// Return the validated result
|
|
||||||
return new ValidationResult(x, sr);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Method to call the ONNX model
|
|
||||||
*/
|
|
||||||
public float[] call(float[][] x, int sr) throws OrtException {
|
|
||||||
ValidationResult result = validateInput(x, sr);
|
|
||||||
x = result.x;
|
|
||||||
sr = result.sr;
|
|
||||||
|
|
||||||
int batchSize = x.length;
|
|
||||||
|
|
||||||
if (lastBatchSize == 0 || lastSr != sr || lastBatchSize != batchSize) {
|
|
||||||
resetStates();
|
|
||||||
}
|
|
||||||
|
|
||||||
OrtEnvironment env = OrtEnvironment.getEnvironment();
|
|
||||||
|
|
||||||
OnnxTensor inputTensor = null;
|
|
||||||
OnnxTensor hTensor = null;
|
|
||||||
OnnxTensor cTensor = null;
|
|
||||||
OnnxTensor srTensor = null;
|
|
||||||
OrtSession.Result ortOutputs = null;
|
|
||||||
|
|
||||||
try {
|
|
||||||
// Create input tensors
|
|
||||||
inputTensor = OnnxTensor.createTensor(env, x);
|
|
||||||
hTensor = OnnxTensor.createTensor(env, h);
|
|
||||||
cTensor = OnnxTensor.createTensor(env, c);
|
|
||||||
srTensor = OnnxTensor.createTensor(env, new long[]{sr});
|
|
||||||
|
|
||||||
Map<String, OnnxTensor> inputs = new HashMap<>();
|
|
||||||
inputs.put("input", inputTensor);
|
|
||||||
inputs.put("sr", srTensor);
|
|
||||||
inputs.put("h", hTensor);
|
|
||||||
inputs.put("c", cTensor);
|
|
||||||
|
|
||||||
// Call the ONNX model for calculation
|
|
||||||
ortOutputs = session.run(inputs);
|
|
||||||
// Get the output results
|
|
||||||
float[][] output = (float[][]) ortOutputs.get(0).getValue();
|
|
||||||
h = (float[][][]) ortOutputs.get(1).getValue();
|
|
||||||
c = (float[][][]) ortOutputs.get(2).getValue();
|
|
||||||
|
|
||||||
lastSr = sr;
|
|
||||||
lastBatchSize = batchSize;
|
|
||||||
return output[0];
|
|
||||||
} finally {
|
|
||||||
if (inputTensor != null) {
|
|
||||||
inputTensor.close();
|
|
||||||
}
|
|
||||||
if (hTensor != null) {
|
|
||||||
hTensor.close();
|
|
||||||
}
|
|
||||||
if (cTensor != null) {
|
|
||||||
cTensor.close();
|
|
||||||
}
|
|
||||||
if (srTensor != null) {
|
|
||||||
srTensor.close();
|
|
||||||
}
|
|
||||||
if (ortOutputs != null) {
|
|
||||||
ortOutputs.close();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -186,7 +186,7 @@ if __name__ == '__main__':
|
|||||||
help="same as trig_sum, but for switching from triggered to non-triggered state (non-speech)")
|
help="same as trig_sum, but for switching from triggered to non-triggered state (non-speech)")
|
||||||
|
|
||||||
parser.add_argument('-N', '--num_steps', type=int, default=8,
|
parser.add_argument('-N', '--num_steps', type=int, default=8,
|
||||||
help="number of overlapping windows to split audio chunk into (we recommend 4 or 8)")
|
help="nubmer of overlapping windows to split audio chunk into (we recommend 4 or 8)")
|
||||||
|
|
||||||
parser.add_argument('-nspw', '--num_samples_per_window', type=int, default=4000,
|
parser.add_argument('-nspw', '--num_samples_per_window', type=int, default=4000,
|
||||||
help="number of samples in each window, our models were trained using 4000 samples (250 ms) per window, so this is preferable value (lesser values reduce quality)")
|
help="number of samples in each window, our models were trained using 4000 samples (250 ms) per window, so this is preferable value (lesser values reduce quality)")
|
||||||
@@ -198,4 +198,4 @@ if __name__ == '__main__':
|
|||||||
help=" minimum silence duration in samples between to separate speech chunks")
|
help=" minimum silence duration in samples between to separate speech chunks")
|
||||||
ARGS = parser.parse_args()
|
ARGS = parser.parse_args()
|
||||||
ARGS.rate=DEFAULT_SAMPLE_RATE
|
ARGS.rate=DEFAULT_SAMPLE_RATE
|
||||||
main(ARGS)
|
main(ARGS)
|
||||||
@@ -1,149 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"attachments": {},
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Install Dependencies"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# !pip install -q torchaudio\n",
|
|
||||||
"SAMPLING_RATE = 16000\n",
|
|
||||||
"import torch\n",
|
|
||||||
"from pprint import pprint\n",
|
|
||||||
"\n",
|
|
||||||
"torch.set_num_threads(1)\n",
|
|
||||||
"NUM_PROCESS=4 # set to the number of CPU cores in the machine\n",
|
|
||||||
"NUM_COPIES=8\n",
|
|
||||||
"# download wav files, make multiple copies\n",
|
|
||||||
"for idx in range(NUM_COPIES):\n",
|
|
||||||
" torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en.wav', f\"en_example{idx}.wav\")\n"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"attachments": {},
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Load VAD model from torch hub"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
|
||||||
" model='silero_vad',\n",
|
|
||||||
" force_reload=True,\n",
|
|
||||||
" onnx=False)\n",
|
|
||||||
"\n",
|
|
||||||
"(get_speech_timestamps,\n",
|
|
||||||
"save_audio,\n",
|
|
||||||
"read_audio,\n",
|
|
||||||
"VADIterator,\n",
|
|
||||||
"collect_chunks) = utils"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"attachments": {},
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Define a vad process function"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import multiprocessing\n",
|
|
||||||
"\n",
|
|
||||||
"vad_models = dict()\n",
|
|
||||||
"\n",
|
|
||||||
"def init_model(model):\n",
|
|
||||||
" pid = multiprocessing.current_process().pid\n",
|
|
||||||
" model, _ = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
|
||||||
" model='silero_vad',\n",
|
|
||||||
" force_reload=False,\n",
|
|
||||||
" onnx=False)\n",
|
|
||||||
" vad_models[pid] = model\n",
|
|
||||||
"\n",
|
|
||||||
"def vad_process(audio_file: str):\n",
|
|
||||||
" \n",
|
|
||||||
" pid = multiprocessing.current_process().pid\n",
|
|
||||||
" \n",
|
|
||||||
" with torch.no_grad():\n",
|
|
||||||
" wav = read_audio(audio_file, sampling_rate=SAMPLING_RATE)\n",
|
|
||||||
" return get_speech_timestamps(\n",
|
|
||||||
" wav,\n",
|
|
||||||
" vad_models[pid],\n",
|
|
||||||
" 0.46, # speech prob threshold\n",
|
|
||||||
" 16000, # sample rate\n",
|
|
||||||
" 300, # min speech duration in ms\n",
|
|
||||||
" 20, # max speech duration in seconds\n",
|
|
||||||
" 600, # min silence duration\n",
|
|
||||||
" 512, # window size\n",
|
|
||||||
" 200, # spech pad ms\n",
|
|
||||||
" )"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"attachments": {},
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Parallelization"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from concurrent.futures import ProcessPoolExecutor, as_completed\n",
|
|
||||||
"\n",
|
|
||||||
"futures = []\n",
|
|
||||||
"\n",
|
|
||||||
"with ProcessPoolExecutor(max_workers=NUM_PROCESS, initializer=init_model, initargs=(model,)) as ex:\n",
|
|
||||||
" for i in range(NUM_COPIES):\n",
|
|
||||||
" futures.append(ex.submit(vad_process, f\"en_example{idx}.wav\"))\n",
|
|
||||||
"\n",
|
|
||||||
"for finished in as_completed(futures):\n",
|
|
||||||
" pprint(finished.result())"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "diarization",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.9.15"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2
|
|
||||||
}
|
|
||||||
@@ -118,7 +118,7 @@
|
|||||||
" abs_max = np.abs(sound).max()\n",
|
" abs_max = np.abs(sound).max()\n",
|
||||||
" sound = sound.astype('float32')\n",
|
" sound = sound.astype('float32')\n",
|
||||||
" if abs_max > 0:\n",
|
" if abs_max > 0:\n",
|
||||||
" sound *= 1/32768\n",
|
" sound *= 1/abs_max\n",
|
||||||
" sound = sound.squeeze() # depends on the use case\n",
|
" sound = sound.squeeze() # depends on the use case\n",
|
||||||
" return sound"
|
" return sound"
|
||||||
]
|
]
|
||||||
|
|||||||
2
examples/rust-example/.gitignore
vendored
2
examples/rust-example/.gitignore
vendored
@@ -1,2 +0,0 @@
|
|||||||
target/
|
|
||||||
recorder.wav
|
|
||||||
781
examples/rust-example/Cargo.lock
generated
781
examples/rust-example/Cargo.lock
generated
@@ -1,781 +0,0 @@
|
|||||||
# This file is automatically @generated by Cargo.
|
|
||||||
# It is not intended for manual editing.
|
|
||||||
version = 3
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "adler"
|
|
||||||
version = "1.0.2"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "f26201604c87b1e01bd3d98f8d5d9a8fcbb815e8cedb41ffccbeb4bf593a35fe"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "autocfg"
|
|
||||||
version = "1.3.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "0c4b4d0bd25bd0b74681c0ad21497610ce1b7c91b1022cd21c80c6fbdd9476b0"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "base64"
|
|
||||||
version = "0.22.1"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "72b3254f16251a8381aa12e40e3c4d2f0199f8c6508fbecb9d91f575e0fbb8c6"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "bitflags"
|
|
||||||
version = "1.3.2"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "bef38d45163c2f1dde094a7dfd33ccf595c92905c8f8f4fdc18d06fb1037718a"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "bitflags"
|
|
||||||
version = "2.5.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "cf4b9d6a944f767f8e5e0db018570623c85f3d925ac718db4e06d0187adb21c1"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "block-buffer"
|
|
||||||
version = "0.10.4"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "3078c7629b62d3f0439517fa394996acacc5cbc91c5a20d8c658e77abd503a71"
|
|
||||||
dependencies = [
|
|
||||||
"generic-array",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "bumpalo"
|
|
||||||
version = "3.16.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "79296716171880943b8470b5f8d03aa55eb2e645a4874bdbb28adb49162e012c"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "cc"
|
|
||||||
version = "1.0.98"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "41c270e7540d725e65ac7f1b212ac8ce349719624d7bcff99f8e2e488e8cf03f"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "cfg-if"
|
|
||||||
version = "1.0.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "cpufeatures"
|
|
||||||
version = "0.2.12"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "53fe5e26ff1b7aef8bca9c6080520cfb8d9333c7568e1829cef191a9723e5504"
|
|
||||||
dependencies = [
|
|
||||||
"libc",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "crc32fast"
|
|
||||||
version = "1.4.2"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "a97769d94ddab943e4510d138150169a2758b5ef3eb191a9ee688de3e23ef7b3"
|
|
||||||
dependencies = [
|
|
||||||
"cfg-if",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "crunchy"
|
|
||||||
version = "0.2.2"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "7a81dae078cea95a014a339291cec439d2f232ebe854a9d672b796c6afafa9b7"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "crypto-common"
|
|
||||||
version = "0.1.6"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "1bfb12502f3fc46cca1bb51ac28df9d618d813cdc3d2f25b9fe775a34af26bb3"
|
|
||||||
dependencies = [
|
|
||||||
"generic-array",
|
|
||||||
"typenum",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "digest"
|
|
||||||
version = "0.10.7"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "9ed9a281f7bc9b7576e61468ba615a66a5c8cfdff42420a70aa82701a3b1e292"
|
|
||||||
dependencies = [
|
|
||||||
"block-buffer",
|
|
||||||
"crypto-common",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "errno"
|
|
||||||
version = "0.3.9"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "534c5cf6194dfab3db3242765c03bbe257cf92f22b38f6bc0c58d59108a820ba"
|
|
||||||
dependencies = [
|
|
||||||
"libc",
|
|
||||||
"windows-sys",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "filetime"
|
|
||||||
version = "0.2.23"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "1ee447700ac8aa0b2f2bd7bc4462ad686ba06baa6727ac149a2d6277f0d240fd"
|
|
||||||
dependencies = [
|
|
||||||
"cfg-if",
|
|
||||||
"libc",
|
|
||||||
"redox_syscall",
|
|
||||||
"windows-sys",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "flate2"
|
|
||||||
version = "1.0.30"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "5f54427cfd1c7829e2a139fcefea601bf088ebca651d2bf53ebc600eac295dae"
|
|
||||||
dependencies = [
|
|
||||||
"crc32fast",
|
|
||||||
"miniz_oxide",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "form_urlencoded"
|
|
||||||
version = "1.2.1"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "e13624c2627564efccf4934284bdd98cbaa14e79b0b5a141218e507b3a823456"
|
|
||||||
dependencies = [
|
|
||||||
"percent-encoding",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "generic-array"
|
|
||||||
version = "0.14.7"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "85649ca51fd72272d7821adaf274ad91c288277713d9c18820d8499a7ff69e9a"
|
|
||||||
dependencies = [
|
|
||||||
"typenum",
|
|
||||||
"version_check",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "getrandom"
|
|
||||||
version = "0.2.15"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "c4567c8db10ae91089c99af84c68c38da3ec2f087c3f82960bcdbf3656b6f4d7"
|
|
||||||
dependencies = [
|
|
||||||
"cfg-if",
|
|
||||||
"libc",
|
|
||||||
"wasi",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "half"
|
|
||||||
version = "2.4.1"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "6dd08c532ae367adf81c312a4580bc67f1d0fe8bc9c460520283f4c0ff277888"
|
|
||||||
dependencies = [
|
|
||||||
"cfg-if",
|
|
||||||
"crunchy",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "hound"
|
|
||||||
version = "3.5.1"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "62adaabb884c94955b19907d60019f4e145d091c75345379e70d1ee696f7854f"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "idna"
|
|
||||||
version = "0.5.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "634d9b1461af396cad843f47fdba5597a4f9e6ddd4bfb6ff5d85028c25cb12f6"
|
|
||||||
dependencies = [
|
|
||||||
"unicode-bidi",
|
|
||||||
"unicode-normalization",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "js-sys"
|
|
||||||
version = "0.3.69"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "29c15563dc2726973df627357ce0c9ddddbea194836909d655df6a75d2cf296d"
|
|
||||||
dependencies = [
|
|
||||||
"wasm-bindgen",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "libc"
|
|
||||||
version = "0.2.155"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "97b3888a4aecf77e811145cadf6eef5901f4782c53886191b2f693f24761847c"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "libloading"
|
|
||||||
version = "0.8.3"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "0c2a198fb6b0eada2a8df47933734e6d35d350665a33a3593d7164fa52c75c19"
|
|
||||||
dependencies = [
|
|
||||||
"cfg-if",
|
|
||||||
"windows-targets",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "linux-raw-sys"
|
|
||||||
version = "0.4.14"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "78b3ae25bc7c8c38cec158d1f2757ee79e9b3740fbc7ccf0e59e4b08d793fa89"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "log"
|
|
||||||
version = "0.4.21"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "90ed8c1e510134f979dbc4f070f87d4313098b704861a105fe34231c70a3901c"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "matrixmultiply"
|
|
||||||
version = "0.3.8"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "7574c1cf36da4798ab73da5b215bbf444f50718207754cb522201d78d1cd0ff2"
|
|
||||||
dependencies = [
|
|
||||||
"autocfg",
|
|
||||||
"rawpointer",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "miniz_oxide"
|
|
||||||
version = "0.7.3"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "87dfd01fe195c66b572b37921ad8803d010623c0aca821bea2302239d155cdae"
|
|
||||||
dependencies = [
|
|
||||||
"adler",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "ndarray"
|
|
||||||
version = "0.15.6"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "adb12d4e967ec485a5f71c6311fe28158e9d6f4bc4a447b474184d0f91a8fa32"
|
|
||||||
dependencies = [
|
|
||||||
"matrixmultiply",
|
|
||||||
"num-complex",
|
|
||||||
"num-integer",
|
|
||||||
"num-traits",
|
|
||||||
"rawpointer",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "num-complex"
|
|
||||||
version = "0.4.6"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "73f88a1307638156682bada9d7604135552957b7818057dcef22705b4d509495"
|
|
||||||
dependencies = [
|
|
||||||
"num-traits",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "num-integer"
|
|
||||||
version = "0.1.46"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "7969661fd2958a5cb096e56c8e1ad0444ac2bbcd0061bd28660485a44879858f"
|
|
||||||
dependencies = [
|
|
||||||
"num-traits",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "num-traits"
|
|
||||||
version = "0.2.19"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "071dfc062690e90b734c0b2273ce72ad0ffa95f0c74596bc250dcfd960262841"
|
|
||||||
dependencies = [
|
|
||||||
"autocfg",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "once_cell"
|
|
||||||
version = "1.19.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "3fdb12b2476b595f9358c5161aa467c2438859caa136dec86c26fdd2efe17b92"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "ort"
|
|
||||||
version = "2.0.0-rc.2"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "0bc80894094c6a875bfac64415ed456fa661081a278a035e22be661305c87e14"
|
|
||||||
dependencies = [
|
|
||||||
"half",
|
|
||||||
"js-sys",
|
|
||||||
"libloading",
|
|
||||||
"ndarray",
|
|
||||||
"ort-sys",
|
|
||||||
"thiserror",
|
|
||||||
"tracing",
|
|
||||||
"web-sys",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "ort-sys"
|
|
||||||
version = "2.0.0-rc.2"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "b3d9c1373fc813d3f024d394f621f4c6dde0734c79b1c17113c3bb5bf0084bbe"
|
|
||||||
dependencies = [
|
|
||||||
"flate2",
|
|
||||||
"sha2",
|
|
||||||
"tar",
|
|
||||||
"ureq",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "percent-encoding"
|
|
||||||
version = "2.3.1"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "e3148f5046208a5d56bcfc03053e3ca6334e51da8dfb19b6cdc8b306fae3283e"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "pin-project-lite"
|
|
||||||
version = "0.2.14"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "bda66fc9667c18cb2758a2ac84d1167245054bcf85d5d1aaa6923f45801bdd02"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "proc-macro2"
|
|
||||||
version = "1.0.84"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "ec96c6a92621310b51366f1e28d05ef11489516e93be030060e5fc12024a49d6"
|
|
||||||
dependencies = [
|
|
||||||
"unicode-ident",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "quote"
|
|
||||||
version = "1.0.36"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "0fa76aaf39101c457836aec0ce2316dbdc3ab723cdda1c6bd4e6ad4208acaca7"
|
|
||||||
dependencies = [
|
|
||||||
"proc-macro2",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "rawpointer"
|
|
||||||
version = "0.2.1"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "60a357793950651c4ed0f3f52338f53b2f809f32d83a07f72909fa13e4c6c1e3"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "redox_syscall"
|
|
||||||
version = "0.4.1"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "4722d768eff46b75989dd134e5c353f0d6296e5aaa3132e776cbdb56be7731aa"
|
|
||||||
dependencies = [
|
|
||||||
"bitflags 1.3.2",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "ring"
|
|
||||||
version = "0.17.8"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "c17fa4cb658e3583423e915b9f3acc01cceaee1860e33d59ebae66adc3a2dc0d"
|
|
||||||
dependencies = [
|
|
||||||
"cc",
|
|
||||||
"cfg-if",
|
|
||||||
"getrandom",
|
|
||||||
"libc",
|
|
||||||
"spin",
|
|
||||||
"untrusted",
|
|
||||||
"windows-sys",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "rust-example"
|
|
||||||
version = "0.1.0"
|
|
||||||
dependencies = [
|
|
||||||
"hound",
|
|
||||||
"ndarray",
|
|
||||||
"ort",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "rustix"
|
|
||||||
version = "0.38.34"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "70dc5ec042f7a43c4a73241207cecc9873a06d45debb38b329f8541d85c2730f"
|
|
||||||
dependencies = [
|
|
||||||
"bitflags 2.5.0",
|
|
||||||
"errno",
|
|
||||||
"libc",
|
|
||||||
"linux-raw-sys",
|
|
||||||
"windows-sys",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "rustls"
|
|
||||||
version = "0.22.4"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "bf4ef73721ac7bcd79b2b315da7779d8fc09718c6b3d2d1b2d94850eb8c18432"
|
|
||||||
dependencies = [
|
|
||||||
"log",
|
|
||||||
"ring",
|
|
||||||
"rustls-pki-types",
|
|
||||||
"rustls-webpki",
|
|
||||||
"subtle",
|
|
||||||
"zeroize",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "rustls-pki-types"
|
|
||||||
version = "1.7.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "976295e77ce332211c0d24d92c0e83e50f5c5f046d11082cea19f3df13a3562d"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "rustls-webpki"
|
|
||||||
version = "0.102.4"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "ff448f7e92e913c4b7d4c6d8e4540a1724b319b4152b8aef6d4cf8339712b33e"
|
|
||||||
dependencies = [
|
|
||||||
"ring",
|
|
||||||
"rustls-pki-types",
|
|
||||||
"untrusted",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "sha2"
|
|
||||||
version = "0.10.8"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "793db75ad2bcafc3ffa7c68b215fee268f537982cd901d132f89c6343f3a3dc8"
|
|
||||||
dependencies = [
|
|
||||||
"cfg-if",
|
|
||||||
"cpufeatures",
|
|
||||||
"digest",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "spin"
|
|
||||||
version = "0.9.8"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "6980e8d7511241f8acf4aebddbb1ff938df5eebe98691418c4468d0b72a96a67"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "subtle"
|
|
||||||
version = "2.5.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "81cdd64d312baedb58e21336b31bc043b77e01cc99033ce76ef539f78e965ebc"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "syn"
|
|
||||||
version = "2.0.66"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "c42f3f41a2de00b01c0aaad383c5a45241efc8b2d1eda5661812fda5f3cdcff5"
|
|
||||||
dependencies = [
|
|
||||||
"proc-macro2",
|
|
||||||
"quote",
|
|
||||||
"unicode-ident",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "tar"
|
|
||||||
version = "0.4.40"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "b16afcea1f22891c49a00c751c7b63b2233284064f11a200fc624137c51e2ddb"
|
|
||||||
dependencies = [
|
|
||||||
"filetime",
|
|
||||||
"libc",
|
|
||||||
"xattr",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "thiserror"
|
|
||||||
version = "1.0.61"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "c546c80d6be4bc6a00c0f01730c08df82eaa7a7a61f11d656526506112cc1709"
|
|
||||||
dependencies = [
|
|
||||||
"thiserror-impl",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "thiserror-impl"
|
|
||||||
version = "1.0.61"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "46c3384250002a6d5af4d114f2845d37b57521033f30d5c3f46c4d70e1197533"
|
|
||||||
dependencies = [
|
|
||||||
"proc-macro2",
|
|
||||||
"quote",
|
|
||||||
"syn",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "tinyvec"
|
|
||||||
version = "1.6.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "87cc5ceb3875bb20c2890005a4e226a4651264a5c75edb2421b52861a0a0cb50"
|
|
||||||
dependencies = [
|
|
||||||
"tinyvec_macros",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "tinyvec_macros"
|
|
||||||
version = "0.1.1"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "1f3ccbac311fea05f86f61904b462b55fb3df8837a366dfc601a0161d0532f20"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "tracing"
|
|
||||||
version = "0.1.40"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "c3523ab5a71916ccf420eebdf5521fcef02141234bbc0b8a49f2fdc4544364ef"
|
|
||||||
dependencies = [
|
|
||||||
"pin-project-lite",
|
|
||||||
"tracing-attributes",
|
|
||||||
"tracing-core",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "tracing-attributes"
|
|
||||||
version = "0.1.27"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "34704c8d6ebcbc939824180af020566b01a7c01f80641264eba0999f6c2b6be7"
|
|
||||||
dependencies = [
|
|
||||||
"proc-macro2",
|
|
||||||
"quote",
|
|
||||||
"syn",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "tracing-core"
|
|
||||||
version = "0.1.32"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "c06d3da6113f116aaee68e4d601191614c9053067f9ab7f6edbcb161237daa54"
|
|
||||||
dependencies = [
|
|
||||||
"once_cell",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "typenum"
|
|
||||||
version = "1.17.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "unicode-bidi"
|
|
||||||
version = "0.3.15"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "08f95100a766bf4f8f28f90d77e0a5461bbdb219042e7679bebe79004fed8d75"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "unicode-ident"
|
|
||||||
version = "1.0.12"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "unicode-normalization"
|
|
||||||
version = "0.1.23"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "a56d1686db2308d901306f92a263857ef59ea39678a5458e7cb17f01415101f5"
|
|
||||||
dependencies = [
|
|
||||||
"tinyvec",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "untrusted"
|
|
||||||
version = "0.9.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "8ecb6da28b8a351d773b68d5825ac39017e680750f980f3a1a85cd8dd28a47c1"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "ureq"
|
|
||||||
version = "2.9.7"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "d11a831e3c0b56e438a28308e7c810799e3c118417f342d30ecec080105395cd"
|
|
||||||
dependencies = [
|
|
||||||
"base64",
|
|
||||||
"log",
|
|
||||||
"once_cell",
|
|
||||||
"rustls",
|
|
||||||
"rustls-pki-types",
|
|
||||||
"rustls-webpki",
|
|
||||||
"url",
|
|
||||||
"webpki-roots",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "url"
|
|
||||||
version = "2.5.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "31e6302e3bb753d46e83516cae55ae196fc0c309407cf11ab35cc51a4c2a4633"
|
|
||||||
dependencies = [
|
|
||||||
"form_urlencoded",
|
|
||||||
"idna",
|
|
||||||
"percent-encoding",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "version_check"
|
|
||||||
version = "0.9.4"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "49874b5167b65d7193b8aba1567f5c7d93d001cafc34600cee003eda787e483f"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "wasi"
|
|
||||||
version = "0.11.0+wasi-snapshot-preview1"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "wasm-bindgen"
|
|
||||||
version = "0.2.92"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "4be2531df63900aeb2bca0daaaddec08491ee64ceecbee5076636a3b026795a8"
|
|
||||||
dependencies = [
|
|
||||||
"cfg-if",
|
|
||||||
"wasm-bindgen-macro",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "wasm-bindgen-backend"
|
|
||||||
version = "0.2.92"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "614d787b966d3989fa7bb98a654e369c762374fd3213d212cfc0251257e747da"
|
|
||||||
dependencies = [
|
|
||||||
"bumpalo",
|
|
||||||
"log",
|
|
||||||
"once_cell",
|
|
||||||
"proc-macro2",
|
|
||||||
"quote",
|
|
||||||
"syn",
|
|
||||||
"wasm-bindgen-shared",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "wasm-bindgen-macro"
|
|
||||||
version = "0.2.92"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "a1f8823de937b71b9460c0c34e25f3da88250760bec0ebac694b49997550d726"
|
|
||||||
dependencies = [
|
|
||||||
"quote",
|
|
||||||
"wasm-bindgen-macro-support",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "wasm-bindgen-macro-support"
|
|
||||||
version = "0.2.92"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "e94f17b526d0a461a191c78ea52bbce64071ed5c04c9ffe424dcb38f74171bb7"
|
|
||||||
dependencies = [
|
|
||||||
"proc-macro2",
|
|
||||||
"quote",
|
|
||||||
"syn",
|
|
||||||
"wasm-bindgen-backend",
|
|
||||||
"wasm-bindgen-shared",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "wasm-bindgen-shared"
|
|
||||||
version = "0.2.92"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "af190c94f2773fdb3729c55b007a722abb5384da03bc0986df4c289bf5567e96"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "web-sys"
|
|
||||||
version = "0.3.69"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "77afa9a11836342370f4817622a2f0f418b134426d91a82dfb48f532d2ec13ef"
|
|
||||||
dependencies = [
|
|
||||||
"js-sys",
|
|
||||||
"wasm-bindgen",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "webpki-roots"
|
|
||||||
version = "0.26.1"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "b3de34ae270483955a94f4b21bdaaeb83d508bb84a01435f393818edb0012009"
|
|
||||||
dependencies = [
|
|
||||||
"rustls-pki-types",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "windows-sys"
|
|
||||||
version = "0.52.0"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "282be5f36a8ce781fad8c8ae18fa3f9beff57ec1b52cb3de0789201425d9a33d"
|
|
||||||
dependencies = [
|
|
||||||
"windows-targets",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "windows-targets"
|
|
||||||
version = "0.52.5"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "6f0713a46559409d202e70e28227288446bf7841d3211583a4b53e3f6d96e7eb"
|
|
||||||
dependencies = [
|
|
||||||
"windows_aarch64_gnullvm",
|
|
||||||
"windows_aarch64_msvc",
|
|
||||||
"windows_i686_gnu",
|
|
||||||
"windows_i686_gnullvm",
|
|
||||||
"windows_i686_msvc",
|
|
||||||
"windows_x86_64_gnu",
|
|
||||||
"windows_x86_64_gnullvm",
|
|
||||||
"windows_x86_64_msvc",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "windows_aarch64_gnullvm"
|
|
||||||
version = "0.52.5"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "7088eed71e8b8dda258ecc8bac5fb1153c5cffaf2578fc8ff5d61e23578d3263"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "windows_aarch64_msvc"
|
|
||||||
version = "0.52.5"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "9985fd1504e250c615ca5f281c3f7a6da76213ebd5ccc9561496568a2752afb6"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "windows_i686_gnu"
|
|
||||||
version = "0.52.5"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "88ba073cf16d5372720ec942a8ccbf61626074c6d4dd2e745299726ce8b89670"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "windows_i686_gnullvm"
|
|
||||||
version = "0.52.5"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "87f4261229030a858f36b459e748ae97545d6f1ec60e5e0d6a3d32e0dc232ee9"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "windows_i686_msvc"
|
|
||||||
version = "0.52.5"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "db3c2bf3d13d5b658be73463284eaf12830ac9a26a90c717b7f771dfe97487bf"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "windows_x86_64_gnu"
|
|
||||||
version = "0.52.5"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "4e4246f76bdeff09eb48875a0fd3e2af6aada79d409d33011886d3e1581517d9"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "windows_x86_64_gnullvm"
|
|
||||||
version = "0.52.5"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "852298e482cd67c356ddd9570386e2862b5673c85bd5f88df9ab6802b334c596"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "windows_x86_64_msvc"
|
|
||||||
version = "0.52.5"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "bec47e5bfd1bff0eeaf6d8b485cc1074891a197ab4225d504cb7a1ab88b02bf0"
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "xattr"
|
|
||||||
version = "1.3.1"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "8da84f1a25939b27f6820d92aed108f83ff920fdf11a7b19366c27c4cda81d4f"
|
|
||||||
dependencies = [
|
|
||||||
"libc",
|
|
||||||
"linux-raw-sys",
|
|
||||||
"rustix",
|
|
||||||
]
|
|
||||||
|
|
||||||
[[package]]
|
|
||||||
name = "zeroize"
|
|
||||||
version = "1.8.1"
|
|
||||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
|
||||||
checksum = "ced3678a2879b30306d323f4542626697a464a97c0a07c9aebf7ebca65cd4dde"
|
|
||||||
@@ -1,9 +0,0 @@
|
|||||||
[package]
|
|
||||||
name = "rust-example"
|
|
||||||
version = "0.1.0"
|
|
||||||
edition = "2021"
|
|
||||||
|
|
||||||
[dependencies]
|
|
||||||
ort = { version = "2.0.0-rc.2", features = ["load-dynamic", "ndarray"] }
|
|
||||||
ndarray = "0.15"
|
|
||||||
hound = "3"
|
|
||||||
@@ -1,19 +0,0 @@
|
|||||||
# Stream example in Rust
|
|
||||||
Made after [C++ stream example](https://github.com/snakers4/silero-vad/tree/master/examples/cpp)
|
|
||||||
|
|
||||||
## Dependencies
|
|
||||||
- To build Rust crate `ort` you need `cc` installed.
|
|
||||||
|
|
||||||
## Usage
|
|
||||||
Just
|
|
||||||
```
|
|
||||||
cargo run
|
|
||||||
```
|
|
||||||
If you run example outside of this repo adjust environment variable
|
|
||||||
```
|
|
||||||
SILERO_MODEL_PATH=/path/to/silero_vad.onnx cargo run
|
|
||||||
```
|
|
||||||
If you need to test against other wav file, not `recorder.wav`, specify it as the first argument
|
|
||||||
```
|
|
||||||
cargo run -- /path/to/audio/file.wav
|
|
||||||
```
|
|
||||||
@@ -1,36 +0,0 @@
|
|||||||
mod silero;
|
|
||||||
mod utils;
|
|
||||||
mod vad_iter;
|
|
||||||
|
|
||||||
fn main() {
|
|
||||||
let model_path = std::env::var("SILERO_MODEL_PATH")
|
|
||||||
.unwrap_or_else(|_| String::from("../../files/silero_vad.onnx"));
|
|
||||||
let audio_path = std::env::args()
|
|
||||||
.nth(1)
|
|
||||||
.unwrap_or_else(|| String::from("recorder.wav"));
|
|
||||||
let mut wav_reader = hound::WavReader::open(audio_path).unwrap();
|
|
||||||
let sample_rate = match wav_reader.spec().sample_rate {
|
|
||||||
8000 => utils::SampleRate::EightkHz,
|
|
||||||
16000 => utils::SampleRate::SixteenkHz,
|
|
||||||
_ => panic!("Unsupported sample rate. Expect 8 kHz or 16 kHz."),
|
|
||||||
};
|
|
||||||
if wav_reader.spec().sample_format != hound::SampleFormat::Int {
|
|
||||||
panic!("Unsupported sample format. Expect Int.");
|
|
||||||
}
|
|
||||||
let content = wav_reader
|
|
||||||
.samples()
|
|
||||||
.filter_map(|x| x.ok())
|
|
||||||
.collect::<Vec<i16>>();
|
|
||||||
assert!(!content.is_empty());
|
|
||||||
let silero = silero::Silero::new(sample_rate, model_path).unwrap();
|
|
||||||
let vad_params = utils::VadParams {
|
|
||||||
sample_rate: sample_rate.into(),
|
|
||||||
..Default::default()
|
|
||||||
};
|
|
||||||
let mut vad_iterator = vad_iter::VadIter::new(silero, vad_params);
|
|
||||||
vad_iterator.process(&content).unwrap();
|
|
||||||
for timestamp in vad_iterator.speeches() {
|
|
||||||
println!("{}", timestamp);
|
|
||||||
}
|
|
||||||
println!("Finished.");
|
|
||||||
}
|
|
||||||
@@ -1,59 +0,0 @@
|
|||||||
use crate::utils;
|
|
||||||
use ndarray::{Array, Array2, ArrayBase, ArrayD, Dim, IxDynImpl, OwnedRepr};
|
|
||||||
use std::path::Path;
|
|
||||||
|
|
||||||
#[derive(Debug)]
|
|
||||||
pub struct Silero {
|
|
||||||
session: ort::Session,
|
|
||||||
sample_rate: ArrayBase<OwnedRepr<i64>, Dim<[usize; 1]>>,
|
|
||||||
h: ArrayBase<OwnedRepr<f32>, Dim<IxDynImpl>>,
|
|
||||||
c: ArrayBase<OwnedRepr<f32>, Dim<IxDynImpl>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Silero {
|
|
||||||
pub fn new(
|
|
||||||
sample_rate: utils::SampleRate,
|
|
||||||
model_path: impl AsRef<Path>,
|
|
||||||
) -> Result<Self, ort::Error> {
|
|
||||||
let session = ort::Session::builder()?.commit_from_file(model_path)?;
|
|
||||||
let h = ArrayD::<f32>::zeros([2, 1, 64].as_slice());
|
|
||||||
let c = ArrayD::<f32>::zeros([2, 1, 64].as_slice());
|
|
||||||
let sample_rate = Array::from_shape_vec([1], vec![sample_rate.into()]).unwrap();
|
|
||||||
Ok(Self {
|
|
||||||
session,
|
|
||||||
sample_rate,
|
|
||||||
h,
|
|
||||||
c,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn reset(&mut self) {
|
|
||||||
self.h = ArrayD::<f32>::zeros([2, 1, 64].as_slice());
|
|
||||||
self.c = ArrayD::<f32>::zeros([2, 1, 64].as_slice());
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn calc_level(&mut self, audio_frame: &[i16]) -> Result<f32, ort::Error> {
|
|
||||||
let data = audio_frame
|
|
||||||
.iter()
|
|
||||||
.map(|x| (*x as f32) / (i16::MAX as f32))
|
|
||||||
.collect::<Vec<_>>();
|
|
||||||
let frame = Array2::<f32>::from_shape_vec([1, data.len()], data).unwrap();
|
|
||||||
let inps = ort::inputs![
|
|
||||||
frame,
|
|
||||||
self.sample_rate.clone(),
|
|
||||||
std::mem::take(&mut self.h),
|
|
||||||
std::mem::take(&mut self.c)
|
|
||||||
]?;
|
|
||||||
let res = self
|
|
||||||
.session
|
|
||||||
.run(ort::SessionInputs::ValueSlice::<4>(&inps))?;
|
|
||||||
self.h = res["hn"].try_extract_tensor().unwrap().to_owned();
|
|
||||||
self.c = res["cn"].try_extract_tensor().unwrap().to_owned();
|
|
||||||
Ok(*res["output"]
|
|
||||||
.try_extract_raw_tensor::<f32>()
|
|
||||||
.unwrap()
|
|
||||||
.1
|
|
||||||
.first()
|
|
||||||
.unwrap())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -1,60 +0,0 @@
|
|||||||
#[derive(Debug, Clone, Copy)]
|
|
||||||
pub enum SampleRate {
|
|
||||||
EightkHz,
|
|
||||||
SixteenkHz,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl From<SampleRate> for i64 {
|
|
||||||
fn from(value: SampleRate) -> Self {
|
|
||||||
match value {
|
|
||||||
SampleRate::EightkHz => 8000,
|
|
||||||
SampleRate::SixteenkHz => 16000,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl From<SampleRate> for usize {
|
|
||||||
fn from(value: SampleRate) -> Self {
|
|
||||||
match value {
|
|
||||||
SampleRate::EightkHz => 8000,
|
|
||||||
SampleRate::SixteenkHz => 16000,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug)]
|
|
||||||
pub struct VadParams {
|
|
||||||
pub frame_size: usize,
|
|
||||||
pub threshold: f32,
|
|
||||||
pub min_silence_duration_ms: usize,
|
|
||||||
pub speech_pad_ms: usize,
|
|
||||||
pub min_speech_duration_ms: usize,
|
|
||||||
pub max_speech_duration_s: f32,
|
|
||||||
pub sample_rate: usize,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Default for VadParams {
|
|
||||||
fn default() -> Self {
|
|
||||||
Self {
|
|
||||||
frame_size: 64,
|
|
||||||
threshold: 0.5,
|
|
||||||
min_silence_duration_ms: 0,
|
|
||||||
speech_pad_ms: 64,
|
|
||||||
min_speech_duration_ms: 64,
|
|
||||||
max_speech_duration_s: f32::INFINITY,
|
|
||||||
sample_rate: 16000,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Default)]
|
|
||||||
pub struct TimeStamp {
|
|
||||||
pub start: i64,
|
|
||||||
pub end: i64,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl std::fmt::Display for TimeStamp {
|
|
||||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
||||||
write!(f, "[start:{:08}, end:{:08}]", self.start, self.end)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@@ -1,223 +0,0 @@
|
|||||||
use crate::{silero, utils};
|
|
||||||
|
|
||||||
const DEBUG_SPEECH_PROB: bool = true;
|
|
||||||
#[derive(Debug)]
|
|
||||||
pub struct VadIter {
|
|
||||||
silero: silero::Silero,
|
|
||||||
params: Params,
|
|
||||||
state: State,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl VadIter {
|
|
||||||
pub fn new(silero: silero::Silero, params: utils::VadParams) -> Self {
|
|
||||||
Self {
|
|
||||||
silero,
|
|
||||||
params: Params::from(params),
|
|
||||||
state: State::new(),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn process(&mut self, samples: &[i16]) -> Result<(), ort::Error> {
|
|
||||||
self.reset_states();
|
|
||||||
for audio_frame in samples.chunks_exact(self.params.frame_size_samples) {
|
|
||||||
let speech_prob = self.silero.calc_level(audio_frame)?;
|
|
||||||
self.state.update(&self.params, speech_prob);
|
|
||||||
}
|
|
||||||
self.state.check_for_last_speech(samples.len());
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn speeches(&self) -> &[utils::TimeStamp] {
|
|
||||||
&self.state.speeches
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl VadIter {
|
|
||||||
fn reset_states(&mut self) {
|
|
||||||
self.silero.reset();
|
|
||||||
self.state = State::new()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[allow(unused)]
|
|
||||||
#[derive(Debug)]
|
|
||||||
struct Params {
|
|
||||||
frame_size: usize,
|
|
||||||
threshold: f32,
|
|
||||||
min_silence_duration_ms: usize,
|
|
||||||
speech_pad_ms: usize,
|
|
||||||
min_speech_duration_ms: usize,
|
|
||||||
max_speech_duration_s: f32,
|
|
||||||
sample_rate: usize,
|
|
||||||
sr_per_ms: usize,
|
|
||||||
frame_size_samples: usize,
|
|
||||||
min_speech_samples: usize,
|
|
||||||
speech_pad_samples: usize,
|
|
||||||
max_speech_samples: f32,
|
|
||||||
min_silence_samples: usize,
|
|
||||||
min_silence_samples_at_max_speech: usize,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl From<utils::VadParams> for Params {
|
|
||||||
fn from(value: utils::VadParams) -> Self {
|
|
||||||
let frame_size = value.frame_size;
|
|
||||||
let threshold = value.threshold;
|
|
||||||
let min_silence_duration_ms = value.min_silence_duration_ms;
|
|
||||||
let speech_pad_ms = value.speech_pad_ms;
|
|
||||||
let min_speech_duration_ms = value.min_speech_duration_ms;
|
|
||||||
let max_speech_duration_s = value.max_speech_duration_s;
|
|
||||||
let sample_rate = value.sample_rate;
|
|
||||||
let sr_per_ms = sample_rate / 1000;
|
|
||||||
let frame_size_samples = frame_size * sr_per_ms;
|
|
||||||
let min_speech_samples = sr_per_ms * min_speech_duration_ms;
|
|
||||||
let speech_pad_samples = sr_per_ms * speech_pad_ms;
|
|
||||||
let max_speech_samples = sample_rate as f32 * max_speech_duration_s
|
|
||||||
- frame_size_samples as f32
|
|
||||||
- 2.0 * speech_pad_samples as f32;
|
|
||||||
let min_silence_samples = sr_per_ms * min_silence_duration_ms;
|
|
||||||
let min_silence_samples_at_max_speech = sr_per_ms * 98;
|
|
||||||
Self {
|
|
||||||
frame_size,
|
|
||||||
threshold,
|
|
||||||
min_silence_duration_ms,
|
|
||||||
speech_pad_ms,
|
|
||||||
min_speech_duration_ms,
|
|
||||||
max_speech_duration_s,
|
|
||||||
sample_rate,
|
|
||||||
sr_per_ms,
|
|
||||||
frame_size_samples,
|
|
||||||
min_speech_samples,
|
|
||||||
speech_pad_samples,
|
|
||||||
max_speech_samples,
|
|
||||||
min_silence_samples,
|
|
||||||
min_silence_samples_at_max_speech,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, Default)]
|
|
||||||
struct State {
|
|
||||||
current_sample: usize,
|
|
||||||
temp_end: usize,
|
|
||||||
next_start: usize,
|
|
||||||
prev_end: usize,
|
|
||||||
triggered: bool,
|
|
||||||
current_speech: utils::TimeStamp,
|
|
||||||
speeches: Vec<utils::TimeStamp>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl State {
|
|
||||||
fn new() -> Self {
|
|
||||||
Default::default()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn update(&mut self, params: &Params, speech_prob: f32) {
|
|
||||||
self.current_sample += params.frame_size_samples;
|
|
||||||
if speech_prob > params.threshold {
|
|
||||||
if self.temp_end != 0 {
|
|
||||||
self.temp_end = 0;
|
|
||||||
if self.next_start < self.prev_end {
|
|
||||||
self.next_start = self
|
|
||||||
.current_sample
|
|
||||||
.saturating_sub(params.frame_size_samples)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if !self.triggered {
|
|
||||||
self.debug(speech_prob, params, "start");
|
|
||||||
self.triggered = true;
|
|
||||||
self.current_speech.start =
|
|
||||||
self.current_sample as i64 - params.frame_size_samples as i64;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
if self.triggered
|
|
||||||
&& (self.current_sample as i64 - self.current_speech.start) as f32
|
|
||||||
> params.max_speech_samples
|
|
||||||
{
|
|
||||||
if self.prev_end > 0 {
|
|
||||||
self.current_speech.end = self.prev_end as _;
|
|
||||||
self.take_speech();
|
|
||||||
if self.next_start < self.prev_end {
|
|
||||||
self.triggered = false
|
|
||||||
} else {
|
|
||||||
self.current_speech.start = self.next_start as _;
|
|
||||||
}
|
|
||||||
self.prev_end = 0;
|
|
||||||
self.next_start = 0;
|
|
||||||
self.temp_end = 0;
|
|
||||||
} else {
|
|
||||||
self.current_speech.end = self.current_sample as _;
|
|
||||||
self.take_speech();
|
|
||||||
self.prev_end = 0;
|
|
||||||
self.next_start = 0;
|
|
||||||
self.temp_end = 0;
|
|
||||||
self.triggered = false;
|
|
||||||
}
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
if speech_prob >= (params.threshold - 0.15) && (speech_prob < params.threshold) {
|
|
||||||
if self.triggered {
|
|
||||||
self.debug(speech_prob, params, "speaking")
|
|
||||||
} else {
|
|
||||||
self.debug(speech_prob, params, "silence")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if self.triggered && speech_prob < (params.threshold - 0.15) {
|
|
||||||
self.debug(speech_prob, params, "end");
|
|
||||||
if self.temp_end == 0 {
|
|
||||||
self.temp_end = self.current_sample;
|
|
||||||
}
|
|
||||||
if self.current_sample.saturating_sub(self.temp_end)
|
|
||||||
> params.min_silence_samples_at_max_speech
|
|
||||||
{
|
|
||||||
self.prev_end = self.temp_end;
|
|
||||||
}
|
|
||||||
if self.current_sample.saturating_sub(self.temp_end) >= params.min_silence_samples {
|
|
||||||
self.current_speech.end = self.temp_end as _;
|
|
||||||
if self.current_speech.end - self.current_speech.start
|
|
||||||
> params.min_speech_samples as _
|
|
||||||
{
|
|
||||||
self.take_speech();
|
|
||||||
self.prev_end = 0;
|
|
||||||
self.next_start = 0;
|
|
||||||
self.temp_end = 0;
|
|
||||||
self.triggered = false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn take_speech(&mut self) {
|
|
||||||
self.speeches.push(std::mem::take(&mut self.current_speech)); // current speech becomes TimeStamp::default() due to take()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn check_for_last_speech(&mut self, last_sample: usize) {
|
|
||||||
if self.current_speech.start > 0 {
|
|
||||||
self.current_speech.end = last_sample as _;
|
|
||||||
self.take_speech();
|
|
||||||
self.prev_end = 0;
|
|
||||||
self.next_start = 0;
|
|
||||||
self.temp_end = 0;
|
|
||||||
self.triggered = false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn debug(&self, speech_prob: f32, params: &Params, title: &str) {
|
|
||||||
if DEBUG_SPEECH_PROB {
|
|
||||||
let speech = self.current_sample as f32
|
|
||||||
- params.frame_size_samples as f32
|
|
||||||
- if title == "end" {
|
|
||||||
params.speech_pad_samples
|
|
||||||
} else {
|
|
||||||
0
|
|
||||||
} as f32; // minus window_size_samples to get precise start time point.
|
|
||||||
println!(
|
|
||||||
"[{:10}: {:.3} s ({:.3}) {:8}]",
|
|
||||||
title,
|
|
||||||
speech / params.sample_rate as f32,
|
|
||||||
speech_prob,
|
|
||||||
self.current_sample - params.frame_size_samples,
|
|
||||||
);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Binary file not shown.
Binary file not shown.
86
hubconf.py
86
hubconf.py
@@ -1,9 +1,12 @@
|
|||||||
dependencies = ['torch', 'torchaudio']
|
dependencies = ['torch', 'torchaudio']
|
||||||
import torch
|
import torch
|
||||||
import json
|
|
||||||
import os
|
import os
|
||||||
|
import json
|
||||||
from utils_vad import (init_jit_model,
|
from utils_vad import (init_jit_model,
|
||||||
get_speech_timestamps,
|
get_speech_timestamps,
|
||||||
|
get_number_ts,
|
||||||
|
get_language,
|
||||||
|
get_language_and_group,
|
||||||
save_audio,
|
save_audio,
|
||||||
read_audio,
|
read_audio,
|
||||||
VADIterator,
|
VADIterator,
|
||||||
@@ -13,32 +16,14 @@ from utils_vad import (init_jit_model,
|
|||||||
OnnxWrapper)
|
OnnxWrapper)
|
||||||
|
|
||||||
|
|
||||||
def versiontuple(v):
|
def silero_vad(onnx=False):
|
||||||
splitted = v.split('+')[0].split(".")
|
|
||||||
version_list = []
|
|
||||||
for i in splitted:
|
|
||||||
try:
|
|
||||||
version_list.append(int(i))
|
|
||||||
except:
|
|
||||||
version_list.append(0)
|
|
||||||
return tuple(version_list)
|
|
||||||
|
|
||||||
|
|
||||||
def silero_vad(onnx=False, force_onnx_cpu=False):
|
|
||||||
"""Silero Voice Activity Detector
|
"""Silero Voice Activity Detector
|
||||||
Returns a model with a set of utils
|
Returns a model with a set of utils
|
||||||
Please see https://github.com/snakers4/silero-vad for usage examples
|
Please see https://github.com/snakers4/silero-vad for usage examples
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if not onnx:
|
|
||||||
installed_version = torch.__version__
|
|
||||||
supported_version = '1.12.0'
|
|
||||||
if versiontuple(installed_version) < versiontuple(supported_version):
|
|
||||||
raise Exception(f'Please install torch {supported_version} or greater ({installed_version} installed)')
|
|
||||||
|
|
||||||
model_dir = os.path.join(os.path.dirname(__file__), 'files')
|
model_dir = os.path.join(os.path.dirname(__file__), 'files')
|
||||||
if onnx:
|
if onnx:
|
||||||
model = OnnxWrapper(os.path.join(model_dir, 'silero_vad.onnx'), force_onnx_cpu)
|
model = OnnxWrapper(os.path.join(model_dir, 'silero_vad.onnx'))
|
||||||
else:
|
else:
|
||||||
model = init_jit_model(os.path.join(model_dir, 'silero_vad.jit'))
|
model = init_jit_model(os.path.join(model_dir, 'silero_vad.jit'))
|
||||||
utils = (get_speech_timestamps,
|
utils = (get_speech_timestamps,
|
||||||
@@ -48,3 +33,62 @@ def silero_vad(onnx=False, force_onnx_cpu=False):
|
|||||||
collect_chunks)
|
collect_chunks)
|
||||||
|
|
||||||
return model, utils
|
return model, utils
|
||||||
|
|
||||||
|
|
||||||
|
def silero_number_detector(onnx=False):
|
||||||
|
"""Silero Number Detector
|
||||||
|
Returns a model with a set of utils
|
||||||
|
Please see https://github.com/snakers4/silero-vad for usage examples
|
||||||
|
"""
|
||||||
|
if onnx:
|
||||||
|
url = 'https://models.silero.ai/vad_models/number_detector.onnx'
|
||||||
|
else:
|
||||||
|
url = 'https://models.silero.ai/vad_models/number_detector.jit'
|
||||||
|
model = Validator(url)
|
||||||
|
utils = (get_number_ts,
|
||||||
|
save_audio,
|
||||||
|
read_audio,
|
||||||
|
collect_chunks,
|
||||||
|
drop_chunks)
|
||||||
|
|
||||||
|
return model, utils
|
||||||
|
|
||||||
|
|
||||||
|
def silero_lang_detector(onnx=False):
|
||||||
|
"""Silero Language Classifier
|
||||||
|
Returns a model with a set of utils
|
||||||
|
Please see https://github.com/snakers4/silero-vad for usage examples
|
||||||
|
"""
|
||||||
|
if onnx:
|
||||||
|
url = 'https://models.silero.ai/vad_models/number_detector.onnx'
|
||||||
|
else:
|
||||||
|
url = 'https://models.silero.ai/vad_models/number_detector.jit'
|
||||||
|
model = Validator(url)
|
||||||
|
utils = (get_language,
|
||||||
|
read_audio)
|
||||||
|
|
||||||
|
return model, utils
|
||||||
|
|
||||||
|
|
||||||
|
def silero_lang_detector_95(onnx=False):
|
||||||
|
"""Silero Language Classifier (95 languages)
|
||||||
|
Returns a model with a set of utils
|
||||||
|
Please see https://github.com/snakers4/silero-vad for usage examples
|
||||||
|
"""
|
||||||
|
|
||||||
|
if onnx:
|
||||||
|
url = 'https://models.silero.ai/vad_models/lang_classifier_95.onnx'
|
||||||
|
else:
|
||||||
|
url = 'https://models.silero.ai/vad_models/lang_classifier_95.jit'
|
||||||
|
model = Validator(url)
|
||||||
|
|
||||||
|
model_dir = os.path.join(os.path.dirname(__file__), 'files')
|
||||||
|
with open(os.path.join(model_dir, 'lang_dict_95.json'), 'r') as f:
|
||||||
|
lang_dict = json.load(f)
|
||||||
|
|
||||||
|
with open(os.path.join(model_dir, 'lang_group_dict_95.json'), 'r') as f:
|
||||||
|
lang_group_dict = json.load(f)
|
||||||
|
|
||||||
|
utils = (get_language_and_group, read_audio)
|
||||||
|
|
||||||
|
return model, lang_dict, lang_group_dict, utils
|
||||||
|
|||||||
295
silero-vad.ipynb
295
silero-vad.ipynb
@@ -1,5 +1,14 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "FpMplOCA2Fwp"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"#VAD"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
@@ -46,7 +55,7 @@
|
|||||||
"USE_ONNX = False # change this to True if you want to test onnx model\n",
|
"USE_ONNX = False # change this to True if you want to test onnx model\n",
|
||||||
"if USE_ONNX:\n",
|
"if USE_ONNX:\n",
|
||||||
" !pip install -q onnxruntime\n",
|
" !pip install -q onnxruntime\n",
|
||||||
"\n",
|
" \n",
|
||||||
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
||||||
" model='silero_vad',\n",
|
" model='silero_vad',\n",
|
||||||
" force_reload=True,\n",
|
" force_reload=True,\n",
|
||||||
@@ -65,7 +74,16 @@
|
|||||||
"id": "fXbbaUO3jsrw"
|
"id": "fXbbaUO3jsrw"
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"## Speech timestapms from full audio"
|
"## Full Audio"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "RAfJPb_a-Auj"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"**Speech timestapms from full audio**"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -92,33 +110,10 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"# merge all speech chunks to one audio\n",
|
"# merge all speech chunks to one audio\n",
|
||||||
"save_audio('only_speech.wav',\n",
|
"save_audio('only_speech.wav',\n",
|
||||||
" collect_chunks(speech_timestamps, wav), sampling_rate=SAMPLING_RATE)\n",
|
" collect_chunks(speech_timestamps, wav), sampling_rate=SAMPLING_RATE) \n",
|
||||||
"Audio('only_speech.wav')"
|
"Audio('only_speech.wav')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"id": "zeO1xCqxUC6w"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"## Entire audio inference"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"id": "LjZBcsaTT7Mk"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
|
|
||||||
"# audio is being splitted into 31.25 ms long pieces\n",
|
|
||||||
"# so output length equals ceil(input_length * 31.25 / SAMPLING_RATE)\n",
|
|
||||||
"predicts = model.audio_forward(wav, sr=SAMPLING_RATE)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
@@ -138,15 +133,12 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"## using VADIterator class\n",
|
"## using VADIterator class\n",
|
||||||
"\n",
|
"\n",
|
||||||
"vad_iterator = VADIterator(model, sampling_rate=SAMPLING_RATE)\n",
|
"vad_iterator = VADIterator(model)\n",
|
||||||
"wav = read_audio(f'en_example.wav', sampling_rate=SAMPLING_RATE)\n",
|
"wav = read_audio(f'en_example.wav', sampling_rate=SAMPLING_RATE)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"window_size_samples = 512 if SAMPLING_RATE == 16000 else 256\n",
|
"window_size_samples = 1536 # number of samples in a single audio chunk\n",
|
||||||
"for i in range(0, len(wav), window_size_samples):\n",
|
"for i in range(0, len(wav), window_size_samples):\n",
|
||||||
" chunk = wav[i: i+ window_size_samples]\n",
|
" speech_dict = vad_iterator(wav[i: i+ window_size_samples], return_seconds=True)\n",
|
||||||
" if len(chunk) < window_size_samples:\n",
|
|
||||||
" break\n",
|
|
||||||
" speech_dict = vad_iterator(chunk, return_seconds=True)\n",
|
|
||||||
" if speech_dict:\n",
|
" if speech_dict:\n",
|
||||||
" print(speech_dict, end=' ')\n",
|
" print(speech_dict, end=' ')\n",
|
||||||
"vad_iterator.reset_states() # reset model states after each audio"
|
"vad_iterator.reset_states() # reset model states after each audio"
|
||||||
@@ -164,17 +156,246 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
|
"wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
|
||||||
"speech_probs = []\n",
|
"speech_probs = []\n",
|
||||||
"window_size_samples = 512 if SAMPLING_RATE == 16000 else 256\n",
|
"window_size_samples = 1536\n",
|
||||||
"for i in range(0, len(wav), window_size_samples):\n",
|
"for i in range(0, len(wav), window_size_samples):\n",
|
||||||
" chunk = wav[i: i+ window_size_samples]\n",
|
" speech_prob = model(wav[i: i+ window_size_samples], SAMPLING_RATE).item()\n",
|
||||||
" if len(chunk) < window_size_samples:\n",
|
|
||||||
" break\n",
|
|
||||||
" speech_prob = model(chunk, SAMPLING_RATE).item()\n",
|
|
||||||
" speech_probs.append(speech_prob)\n",
|
" speech_probs.append(speech_prob)\n",
|
||||||
"vad_iterator.reset_states() # reset model states after each audio\n",
|
"vad_iterator.reset_states() # reset model states after each audio\n",
|
||||||
"\n",
|
"\n",
|
||||||
"print(speech_probs[:10]) # first 10 chunks predicts"
|
"print(speech_probs[:10]) # first 10 chunks predicts"
|
||||||
]
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"heading_collapsed": true,
|
||||||
|
"id": "36jY0niD2Fww"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# Number detector"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"heading_collapsed": true,
|
||||||
|
"hidden": true,
|
||||||
|
"id": "scd1DlS42Fwx"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Install Dependencies"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"hidden": true,
|
||||||
|
"id": "Kq5gQuYq2Fwx"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"#@title Install and Import Dependencies\n",
|
||||||
|
"\n",
|
||||||
|
"# this assumes that you have a relevant version of PyTorch installed\n",
|
||||||
|
"!pip install -q torchaudio\n",
|
||||||
|
"\n",
|
||||||
|
"SAMPLING_RATE = 16000\n",
|
||||||
|
"\n",
|
||||||
|
"import torch\n",
|
||||||
|
"torch.set_num_threads(1)\n",
|
||||||
|
"\n",
|
||||||
|
"from IPython.display import Audio\n",
|
||||||
|
"from pprint import pprint\n",
|
||||||
|
"# download example\n",
|
||||||
|
"torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en_num.wav', 'en_number_example.wav')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"id": "dPwCFHmFycUF"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"USE_ONNX = False # change this to True if you want to test onnx model\n",
|
||||||
|
"if USE_ONNX:\n",
|
||||||
|
" !pip install -q onnxruntime\n",
|
||||||
|
" \n",
|
||||||
|
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
||||||
|
" model='silero_number_detector',\n",
|
||||||
|
" force_reload=True,\n",
|
||||||
|
" onnx=USE_ONNX)\n",
|
||||||
|
"\n",
|
||||||
|
"(get_number_ts,\n",
|
||||||
|
" save_audio,\n",
|
||||||
|
" read_audio,\n",
|
||||||
|
" collect_chunks,\n",
|
||||||
|
" drop_chunks) = utils\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"heading_collapsed": true,
|
||||||
|
"hidden": true,
|
||||||
|
"id": "qhPa30ij2Fwy"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Full audio"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"hidden": true,
|
||||||
|
"id": "EXpau6xq2Fwy"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"wav = read_audio('en_number_example.wav', sampling_rate=SAMPLING_RATE)\n",
|
||||||
|
"# get number timestamps from full audio file\n",
|
||||||
|
"number_timestamps = get_number_ts(wav, model)\n",
|
||||||
|
"pprint(number_timestamps)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"hidden": true,
|
||||||
|
"id": "u-KfXRhZ2Fwy"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# convert ms in timestamps to samples\n",
|
||||||
|
"for timestamp in number_timestamps:\n",
|
||||||
|
" timestamp['start'] = int(timestamp['start'] * SAMPLING_RATE / 1000)\n",
|
||||||
|
" timestamp['end'] = int(timestamp['end'] * SAMPLING_RATE / 1000)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"hidden": true,
|
||||||
|
"id": "iwYEC4aZ2Fwy"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# merge all number chunks to one audio\n",
|
||||||
|
"save_audio('only_numbers.wav',\n",
|
||||||
|
" collect_chunks(number_timestamps, wav), SAMPLING_RATE) \n",
|
||||||
|
"Audio('only_numbers.wav')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"hidden": true,
|
||||||
|
"id": "fHaYejX12Fwy"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# drop all number chunks from audio\n",
|
||||||
|
"save_audio('no_numbers.wav',\n",
|
||||||
|
" drop_chunks(number_timestamps, wav), SAMPLING_RATE) \n",
|
||||||
|
"Audio('no_numbers.wav')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"heading_collapsed": true,
|
||||||
|
"id": "PnKtJKbq2Fwz"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# Language detector"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"heading_collapsed": true,
|
||||||
|
"hidden": true,
|
||||||
|
"id": "F5cAmMbP2Fwz"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Install Dependencies"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"hidden": true,
|
||||||
|
"id": "Zu9D0t6n2Fwz"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"#@title Install and Import Dependencies\n",
|
||||||
|
"\n",
|
||||||
|
"# this assumes that you have a relevant version of PyTorch installed\n",
|
||||||
|
"!pip install -q torchaudio\n",
|
||||||
|
"\n",
|
||||||
|
"SAMPLING_RATE = 16000\n",
|
||||||
|
"\n",
|
||||||
|
"import torch\n",
|
||||||
|
"torch.set_num_threads(1)\n",
|
||||||
|
"\n",
|
||||||
|
"from IPython.display import Audio\n",
|
||||||
|
"from pprint import pprint\n",
|
||||||
|
"# download example\n",
|
||||||
|
"torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en.wav', 'en_example.wav')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"id": "JfRKDZiRztFe"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"USE_ONNX = False # change this to True if you want to test onnx model\n",
|
||||||
|
"if USE_ONNX:\n",
|
||||||
|
" !pip install -q onnxruntime\n",
|
||||||
|
" \n",
|
||||||
|
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
||||||
|
" model='silero_lang_detector',\n",
|
||||||
|
" force_reload=True,\n",
|
||||||
|
" onnx=USE_ONNX)\n",
|
||||||
|
"\n",
|
||||||
|
"get_language, read_audio = utils"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"heading_collapsed": true,
|
||||||
|
"hidden": true,
|
||||||
|
"id": "iC696eMX2Fwz"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Full audio"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"hidden": true,
|
||||||
|
"id": "c8UYnYBF2Fw0"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
|
||||||
|
"lang = get_language(wav, model)\n",
|
||||||
|
"print(lang)"
|
||||||
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
|||||||
302
utils_vad.py
302
utils_vad.py
@@ -1,6 +1,7 @@
|
|||||||
import torch
|
import torch
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from typing import Callable, List
|
from typing import List
|
||||||
|
import torch.nn.functional as F
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
languages = ['ru', 'en', 'de', 'es']
|
languages = ['ru', 'en', 'de', 'es']
|
||||||
@@ -8,113 +9,51 @@ languages = ['ru', 'en', 'de', 'es']
|
|||||||
|
|
||||||
class OnnxWrapper():
|
class OnnxWrapper():
|
||||||
|
|
||||||
def __init__(self, path, force_onnx_cpu=False):
|
def __init__(self, path):
|
||||||
import numpy as np
|
import numpy as np
|
||||||
global np
|
global np
|
||||||
import onnxruntime
|
import onnxruntime
|
||||||
|
self.session = onnxruntime.InferenceSession(path)
|
||||||
opts = onnxruntime.SessionOptions()
|
self.session.intra_op_num_threads = 1
|
||||||
opts.inter_op_num_threads = 1
|
self.session.inter_op_num_threads = 1
|
||||||
opts.intra_op_num_threads = 1
|
|
||||||
|
|
||||||
if force_onnx_cpu and 'CPUExecutionProvider' in onnxruntime.get_available_providers():
|
|
||||||
self.session = onnxruntime.InferenceSession(path, providers=['CPUExecutionProvider'], sess_options=opts)
|
|
||||||
else:
|
|
||||||
self.session = onnxruntime.InferenceSession(path, sess_options=opts)
|
|
||||||
|
|
||||||
self.reset_states()
|
self.reset_states()
|
||||||
self.sample_rates = [8000, 16000]
|
|
||||||
|
|
||||||
def _validate_input(self, x, sr: int):
|
def reset_states(self):
|
||||||
|
self._h = np.zeros((2, 1, 64)).astype('float32')
|
||||||
|
self._c = np.zeros((2, 1, 64)).astype('float32')
|
||||||
|
|
||||||
|
def __call__(self, x, sr: int):
|
||||||
if x.dim() == 1:
|
if x.dim() == 1:
|
||||||
x = x.unsqueeze(0)
|
x = x.unsqueeze(0)
|
||||||
if x.dim() > 2:
|
if x.dim() > 2:
|
||||||
raise ValueError(f"Too many dimensions for input audio chunk {x.dim()}")
|
raise ValueError(f"Too many dimensions for input audio chunk {x.dim()}")
|
||||||
|
|
||||||
if sr != 16000 and (sr % 16000 == 0):
|
if x.shape[0] > 1:
|
||||||
step = sr // 16000
|
raise ValueError("Onnx model does not support batching")
|
||||||
x = x[:,::step]
|
|
||||||
sr = 16000
|
if sr not in [16000]:
|
||||||
|
raise ValueError(f"Supported sample rates: {[16000]}")
|
||||||
|
|
||||||
if sr not in self.sample_rates:
|
|
||||||
raise ValueError(f"Supported sampling rates: {self.sample_rates} (or multiply of 16000)")
|
|
||||||
if sr / x.shape[1] > 31.25:
|
if sr / x.shape[1] > 31.25:
|
||||||
raise ValueError("Input audio chunk is too short")
|
raise ValueError("Input audio chunk is too short")
|
||||||
|
|
||||||
return x, sr
|
ort_inputs = {'input': x.numpy(), 'h0': self._h, 'c0': self._c}
|
||||||
|
ort_outs = self.session.run(None, ort_inputs)
|
||||||
|
out, self._h, self._c = ort_outs
|
||||||
|
|
||||||
def reset_states(self, batch_size=1):
|
out = torch.tensor(out).squeeze(2)[:, 1] # make output type match JIT analog
|
||||||
self._state = torch.zeros((2, batch_size, 128)).float()
|
|
||||||
self._context = torch.zeros(0)
|
|
||||||
self._last_sr = 0
|
|
||||||
self._last_batch_size = 0
|
|
||||||
|
|
||||||
def __call__(self, x, sr: int):
|
|
||||||
|
|
||||||
x, sr = self._validate_input(x, sr)
|
|
||||||
num_samples = 512 if sr == 16000 else 256
|
|
||||||
|
|
||||||
if x.shape[-1] != num_samples:
|
|
||||||
raise ValueError(f"Provided number of samples is {x.shape[-1]} (Supported values: 256 for 8000 sample rate, 512 for 16000)")
|
|
||||||
|
|
||||||
batch_size = x.shape[0]
|
|
||||||
context_size = 64 if sr == 16000 else 32
|
|
||||||
|
|
||||||
if not self._last_batch_size:
|
|
||||||
self.reset_states(batch_size)
|
|
||||||
if (self._last_sr) and (self._last_sr != sr):
|
|
||||||
self.reset_states(batch_size)
|
|
||||||
if (self._last_batch_size) and (self._last_batch_size != batch_size):
|
|
||||||
self.reset_states(batch_size)
|
|
||||||
|
|
||||||
if not len(self._context):
|
|
||||||
self._context = torch.zeros(batch_size, context_size)
|
|
||||||
|
|
||||||
x = torch.cat([self._context, x], dim=1)
|
|
||||||
if sr in [8000, 16000]:
|
|
||||||
ort_inputs = {'input': x.numpy(), 'state': self._state.numpy(), 'sr': np.array(sr, dtype='int64')}
|
|
||||||
ort_outs = self.session.run(None, ort_inputs)
|
|
||||||
out, state = ort_outs
|
|
||||||
self._state = torch.from_numpy(state)
|
|
||||||
else:
|
|
||||||
raise ValueError()
|
|
||||||
|
|
||||||
self._context = x[..., -context_size:]
|
|
||||||
self._last_sr = sr
|
|
||||||
self._last_batch_size = batch_size
|
|
||||||
|
|
||||||
out = torch.from_numpy(out)
|
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def audio_forward(self, x, sr: int):
|
|
||||||
outs = []
|
|
||||||
x, sr = self._validate_input(x, sr)
|
|
||||||
self.reset_states()
|
|
||||||
num_samples = 512 if sr == 16000 else 256
|
|
||||||
|
|
||||||
if x.shape[1] % num_samples:
|
|
||||||
pad_num = num_samples - (x.shape[1] % num_samples)
|
|
||||||
x = torch.nn.functional.pad(x, (0, pad_num), 'constant', value=0.0)
|
|
||||||
|
|
||||||
for i in range(0, x.shape[1], num_samples):
|
|
||||||
wavs_batch = x[:, i:i+num_samples]
|
|
||||||
out_chunk = self.__call__(wavs_batch, sr)
|
|
||||||
outs.append(out_chunk)
|
|
||||||
|
|
||||||
stacked = torch.cat(outs, dim=1)
|
|
||||||
return stacked.cpu()
|
|
||||||
|
|
||||||
|
|
||||||
class Validator():
|
class Validator():
|
||||||
def __init__(self, url, force_onnx_cpu):
|
def __init__(self, url):
|
||||||
self.onnx = True if url.endswith('.onnx') else False
|
self.onnx = True if url.endswith('.onnx') else False
|
||||||
torch.hub.download_url_to_file(url, 'inf.model')
|
torch.hub.download_url_to_file(url, 'inf.model')
|
||||||
if self.onnx:
|
if self.onnx:
|
||||||
import onnxruntime
|
import onnxruntime
|
||||||
if force_onnx_cpu and 'CPUExecutionProvider' in onnxruntime.get_available_providers():
|
self.model = onnxruntime.InferenceSession('inf.model')
|
||||||
self.model = onnxruntime.InferenceSession('inf.model', providers=['CPUExecutionProvider'])
|
|
||||||
else:
|
|
||||||
self.model = onnxruntime.InferenceSession('inf.model')
|
|
||||||
else:
|
else:
|
||||||
self.model = init_jit_model(model_path='inf.model')
|
self.model = init_jit_model(model_path='inf.model')
|
||||||
|
|
||||||
@@ -133,27 +72,16 @@ class Validator():
|
|||||||
def read_audio(path: str,
|
def read_audio(path: str,
|
||||||
sampling_rate: int = 16000):
|
sampling_rate: int = 16000):
|
||||||
|
|
||||||
sox_backends = set(['sox', 'sox_io'])
|
wav, sr = torchaudio.load(path)
|
||||||
audio_backends = torchaudio.list_audio_backends()
|
|
||||||
|
|
||||||
if len(sox_backends.intersection(audio_backends)) > 0:
|
if wav.size(0) > 1:
|
||||||
effects = [
|
wav = wav.mean(dim=0, keepdim=True)
|
||||||
['channels', '1'],
|
|
||||||
['rate', str(sampling_rate)]
|
|
||||||
]
|
|
||||||
|
|
||||||
wav, sr = torchaudio.sox_effects.apply_effects_file(path, effects=effects)
|
if sr != sampling_rate:
|
||||||
else:
|
transform = torchaudio.transforms.Resample(orig_freq=sr,
|
||||||
wav, sr = torchaudio.load(path)
|
new_freq=sampling_rate)
|
||||||
|
wav = transform(wav)
|
||||||
if wav.size(0) > 1:
|
sr = sampling_rate
|
||||||
wav = wav.mean(dim=0, keepdim=True)
|
|
||||||
|
|
||||||
if sr != sampling_rate:
|
|
||||||
transform = torchaudio.transforms.Resample(orig_freq=sr,
|
|
||||||
new_freq=sampling_rate)
|
|
||||||
wav = transform(wav)
|
|
||||||
sr = sampling_rate
|
|
||||||
|
|
||||||
assert sr == sampling_rate
|
assert sr == sampling_rate
|
||||||
return wav.squeeze(0)
|
return wav.squeeze(0)
|
||||||
@@ -162,11 +90,12 @@ def read_audio(path: str,
|
|||||||
def save_audio(path: str,
|
def save_audio(path: str,
|
||||||
tensor: torch.Tensor,
|
tensor: torch.Tensor,
|
||||||
sampling_rate: int = 16000):
|
sampling_rate: int = 16000):
|
||||||
torchaudio.save(path, tensor.unsqueeze(0), sampling_rate, bits_per_sample=16)
|
torchaudio.save(path, tensor.unsqueeze(0), sampling_rate)
|
||||||
|
|
||||||
|
|
||||||
def init_jit_model(model_path: str,
|
def init_jit_model(model_path: str,
|
||||||
device=torch.device('cpu')):
|
device=torch.device('cpu')):
|
||||||
|
torch.set_grad_enabled(False)
|
||||||
model = torch.jit.load(model_path, map_location=device)
|
model = torch.jit.load(model_path, map_location=device)
|
||||||
model.eval()
|
model.eval()
|
||||||
return model
|
return model
|
||||||
@@ -182,19 +111,16 @@ def make_visualization(probs, step):
|
|||||||
colormap='tab20')
|
colormap='tab20')
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def get_speech_timestamps(audio: torch.Tensor,
|
def get_speech_timestamps(audio: torch.Tensor,
|
||||||
model,
|
model,
|
||||||
threshold: float = 0.5,
|
threshold: float = 0.5,
|
||||||
sampling_rate: int = 16000,
|
sampling_rate: int = 16000,
|
||||||
min_speech_duration_ms: int = 250,
|
min_speech_duration_ms: int = 250,
|
||||||
max_speech_duration_s: float = float('inf'),
|
|
||||||
min_silence_duration_ms: int = 100,
|
min_silence_duration_ms: int = 100,
|
||||||
|
window_size_samples: int = 1536,
|
||||||
speech_pad_ms: int = 30,
|
speech_pad_ms: int = 30,
|
||||||
return_seconds: bool = False,
|
return_seconds: bool = False,
|
||||||
visualize_probs: bool = False,
|
visualize_probs: bool = False):
|
||||||
progress_tracking_callback: Callable[[float], None] = None,
|
|
||||||
window_size_samples: int = 512,):
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
This method is used for splitting long audios into speech chunks using silero VAD
|
This method is used for splitting long audios into speech chunks using silero VAD
|
||||||
@@ -204,26 +130,26 @@ def get_speech_timestamps(audio: torch.Tensor,
|
|||||||
audio: torch.Tensor, one dimensional
|
audio: torch.Tensor, one dimensional
|
||||||
One dimensional float torch.Tensor, other types are casted to torch if possible
|
One dimensional float torch.Tensor, other types are casted to torch if possible
|
||||||
|
|
||||||
model: preloaded .jit/.onnx silero VAD model
|
model: preloaded .jit silero VAD model
|
||||||
|
|
||||||
threshold: float (default - 0.5)
|
threshold: float (default - 0.5)
|
||||||
Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, probabilities ABOVE this value are considered as SPEECH.
|
Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, probabilities ABOVE this value are considered as SPEECH.
|
||||||
It is better to tune this parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
It is better to tune this parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
||||||
|
|
||||||
sampling_rate: int (default - 16000)
|
sampling_rate: int (default - 16000)
|
||||||
Currently silero VAD models support 8000 and 16000 (or multiply of 16000) sample rates
|
Currently silero VAD models support 8000 and 16000 sample rates
|
||||||
|
|
||||||
min_speech_duration_ms: int (default - 250 milliseconds)
|
min_speech_duration_ms: int (default - 250 milliseconds)
|
||||||
Final speech chunks shorter min_speech_duration_ms are thrown out
|
Final speech chunks shorter min_speech_duration_ms are thrown out
|
||||||
|
|
||||||
max_speech_duration_s: int (default - inf)
|
|
||||||
Maximum duration of speech chunks in seconds
|
|
||||||
Chunks longer than max_speech_duration_s will be split at the timestamp of the last silence that lasts more than 100ms (if any), to prevent agressive cutting.
|
|
||||||
Otherwise, they will be split aggressively just before max_speech_duration_s.
|
|
||||||
|
|
||||||
min_silence_duration_ms: int (default - 100 milliseconds)
|
min_silence_duration_ms: int (default - 100 milliseconds)
|
||||||
In the end of each speech chunk wait for min_silence_duration_ms before separating it
|
In the end of each speech chunk wait for min_silence_duration_ms before separating it
|
||||||
|
|
||||||
|
window_size_samples: int (default - 1536 samples)
|
||||||
|
Audio chunks of window_size_samples size are fed to the silero VAD model.
|
||||||
|
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate and 256, 512, 768 samples for 8000 sample rate.
|
||||||
|
Values other than these may affect model perfomance!!
|
||||||
|
|
||||||
speech_pad_ms: int (default - 30 milliseconds)
|
speech_pad_ms: int (default - 30 milliseconds)
|
||||||
Final speech chunks are padded by speech_pad_ms each side
|
Final speech chunks are padded by speech_pad_ms each side
|
||||||
|
|
||||||
@@ -233,12 +159,6 @@ def get_speech_timestamps(audio: torch.Tensor,
|
|||||||
visualize_probs: bool (default - False)
|
visualize_probs: bool (default - False)
|
||||||
whether draw prob hist or not
|
whether draw prob hist or not
|
||||||
|
|
||||||
progress_tracking_callback: Callable[[float], None] (default - None)
|
|
||||||
callback function taking progress in percents as an argument
|
|
||||||
|
|
||||||
window_size_samples: int (default - 512 samples)
|
|
||||||
!!! DEPRECATED, DOES NOTHING !!!
|
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
----------
|
----------
|
||||||
speeches: list of dicts
|
speeches: list of dicts
|
||||||
@@ -257,25 +177,15 @@ def get_speech_timestamps(audio: torch.Tensor,
|
|||||||
if len(audio.shape) > 1:
|
if len(audio.shape) > 1:
|
||||||
raise ValueError("More than one dimension in audio. Are you trying to process audio with 2 channels?")
|
raise ValueError("More than one dimension in audio. Are you trying to process audio with 2 channels?")
|
||||||
|
|
||||||
if sampling_rate > 16000 and (sampling_rate % 16000 == 0):
|
if sampling_rate == 8000 and window_size_samples > 768:
|
||||||
step = sampling_rate // 16000
|
warnings.warn('window_size_samples is too big for 8000 sampling_rate! Better set window_size_samples to 256, 512 or 1536 for 8000 sample rate!')
|
||||||
sampling_rate = 16000
|
if window_size_samples not in [256, 512, 768, 1024, 1536]:
|
||||||
audio = audio[::step]
|
warnings.warn('Unusual window_size_samples! Supported window_size_samples:\n - [512, 1024, 1536] for 16000 sampling_rate\n - [256, 512, 768] for 8000 sampling_rate')
|
||||||
warnings.warn('Sampling rate is a multiply of 16000, casting to 16000 manually!')
|
|
||||||
else:
|
|
||||||
step = 1
|
|
||||||
|
|
||||||
if sampling_rate not in [8000, 16000]:
|
|
||||||
raise ValueError("Currently silero VAD models support 8000 and 16000 (or multiply of 16000) sample rates")
|
|
||||||
|
|
||||||
window_size_samples = 512 if sampling_rate == 16000 else 256
|
|
||||||
|
|
||||||
model.reset_states()
|
model.reset_states()
|
||||||
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
|
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
|
||||||
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
|
||||||
max_speech_samples = sampling_rate * max_speech_duration_s - window_size_samples - 2 * speech_pad_samples
|
|
||||||
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
||||||
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000
|
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
||||||
|
|
||||||
audio_length_samples = len(audio)
|
audio_length_samples = len(audio)
|
||||||
|
|
||||||
@@ -286,67 +196,37 @@ def get_speech_timestamps(audio: torch.Tensor,
|
|||||||
chunk = torch.nn.functional.pad(chunk, (0, int(window_size_samples - len(chunk))))
|
chunk = torch.nn.functional.pad(chunk, (0, int(window_size_samples - len(chunk))))
|
||||||
speech_prob = model(chunk, sampling_rate).item()
|
speech_prob = model(chunk, sampling_rate).item()
|
||||||
speech_probs.append(speech_prob)
|
speech_probs.append(speech_prob)
|
||||||
# caculate progress and seng it to callback function
|
|
||||||
progress = current_start_sample + window_size_samples
|
|
||||||
if progress > audio_length_samples:
|
|
||||||
progress = audio_length_samples
|
|
||||||
progress_percent = (progress / audio_length_samples) * 100
|
|
||||||
if progress_tracking_callback:
|
|
||||||
progress_tracking_callback(progress_percent)
|
|
||||||
|
|
||||||
triggered = False
|
triggered = False
|
||||||
speeches = []
|
speeches = []
|
||||||
current_speech = {}
|
current_speech = {}
|
||||||
neg_threshold = threshold - 0.15
|
neg_threshold = threshold - 0.15
|
||||||
temp_end = 0 # to save potential segment end (and tolerate some silence)
|
temp_end = 0
|
||||||
prev_end = next_start = 0 # to save potential segment limits in case of maximum segment size reached
|
|
||||||
|
|
||||||
for i, speech_prob in enumerate(speech_probs):
|
for i, speech_prob in enumerate(speech_probs):
|
||||||
if (speech_prob >= threshold) and temp_end:
|
if (speech_prob >= threshold) and temp_end:
|
||||||
temp_end = 0
|
temp_end = 0
|
||||||
if next_start < prev_end:
|
|
||||||
next_start = window_size_samples * i
|
|
||||||
|
|
||||||
if (speech_prob >= threshold) and not triggered:
|
if (speech_prob >= threshold) and not triggered:
|
||||||
triggered = True
|
triggered = True
|
||||||
current_speech['start'] = window_size_samples * i
|
current_speech['start'] = window_size_samples * i
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if triggered and (window_size_samples * i) - current_speech['start'] > max_speech_samples:
|
|
||||||
if prev_end:
|
|
||||||
current_speech['end'] = prev_end
|
|
||||||
speeches.append(current_speech)
|
|
||||||
current_speech = {}
|
|
||||||
if next_start < prev_end: # previously reached silence (< neg_thres) and is still not speech (< thres)
|
|
||||||
triggered = False
|
|
||||||
else:
|
|
||||||
current_speech['start'] = next_start
|
|
||||||
prev_end = next_start = temp_end = 0
|
|
||||||
else:
|
|
||||||
current_speech['end'] = window_size_samples * i
|
|
||||||
speeches.append(current_speech)
|
|
||||||
current_speech = {}
|
|
||||||
prev_end = next_start = temp_end = 0
|
|
||||||
triggered = False
|
|
||||||
continue
|
|
||||||
|
|
||||||
if (speech_prob < neg_threshold) and triggered:
|
if (speech_prob < neg_threshold) and triggered:
|
||||||
if not temp_end:
|
if not temp_end:
|
||||||
temp_end = window_size_samples * i
|
temp_end = window_size_samples * i
|
||||||
if ((window_size_samples * i) - temp_end) > min_silence_samples_at_max_speech : # condition to avoid cutting in very short silence
|
|
||||||
prev_end = temp_end
|
|
||||||
if (window_size_samples * i) - temp_end < min_silence_samples:
|
if (window_size_samples * i) - temp_end < min_silence_samples:
|
||||||
continue
|
continue
|
||||||
else:
|
else:
|
||||||
current_speech['end'] = temp_end
|
current_speech['end'] = temp_end
|
||||||
if (current_speech['end'] - current_speech['start']) > min_speech_samples:
|
if (current_speech['end'] - current_speech['start']) > min_speech_samples:
|
||||||
speeches.append(current_speech)
|
speeches.append(current_speech)
|
||||||
|
temp_end = 0
|
||||||
current_speech = {}
|
current_speech = {}
|
||||||
prev_end = next_start = temp_end = 0
|
|
||||||
triggered = False
|
triggered = False
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if current_speech and (audio_length_samples - current_speech['start']) > min_speech_samples:
|
if current_speech:
|
||||||
current_speech['end'] = audio_length_samples
|
current_speech['end'] = audio_length_samples
|
||||||
speeches.append(current_speech)
|
speeches.append(current_speech)
|
||||||
|
|
||||||
@@ -359,8 +239,7 @@ def get_speech_timestamps(audio: torch.Tensor,
|
|||||||
speech['end'] += int(silence_duration // 2)
|
speech['end'] += int(silence_duration // 2)
|
||||||
speeches[i+1]['start'] = int(max(0, speeches[i+1]['start'] - silence_duration // 2))
|
speeches[i+1]['start'] = int(max(0, speeches[i+1]['start'] - silence_duration // 2))
|
||||||
else:
|
else:
|
||||||
speech['end'] = int(min(audio_length_samples, speech['end'] + speech_pad_samples))
|
speech['end'] += int(speech_pad_samples)
|
||||||
speeches[i+1]['start'] = int(max(0, speeches[i+1]['start'] - speech_pad_samples))
|
|
||||||
else:
|
else:
|
||||||
speech['end'] = int(min(audio_length_samples, speech['end'] + speech_pad_samples))
|
speech['end'] = int(min(audio_length_samples, speech['end'] + speech_pad_samples))
|
||||||
|
|
||||||
@@ -368,10 +247,6 @@ def get_speech_timestamps(audio: torch.Tensor,
|
|||||||
for speech_dict in speeches:
|
for speech_dict in speeches:
|
||||||
speech_dict['start'] = round(speech_dict['start'] / sampling_rate, 1)
|
speech_dict['start'] = round(speech_dict['start'] / sampling_rate, 1)
|
||||||
speech_dict['end'] = round(speech_dict['end'] / sampling_rate, 1)
|
speech_dict['end'] = round(speech_dict['end'] / sampling_rate, 1)
|
||||||
elif step > 1:
|
|
||||||
for speech_dict in speeches:
|
|
||||||
speech_dict['start'] *= step
|
|
||||||
speech_dict['end'] *= step
|
|
||||||
|
|
||||||
if visualize_probs:
|
if visualize_probs:
|
||||||
make_visualization(speech_probs, window_size_samples / sampling_rate)
|
make_visualization(speech_probs, window_size_samples / sampling_rate)
|
||||||
@@ -379,6 +254,72 @@ def get_speech_timestamps(audio: torch.Tensor,
|
|||||||
return speeches
|
return speeches
|
||||||
|
|
||||||
|
|
||||||
|
def get_number_ts(wav: torch.Tensor,
|
||||||
|
model,
|
||||||
|
model_stride=8,
|
||||||
|
hop_length=160,
|
||||||
|
sample_rate=16000):
|
||||||
|
wav = torch.unsqueeze(wav, dim=0)
|
||||||
|
perframe_logits = model(wav)[0]
|
||||||
|
perframe_preds = torch.argmax(torch.softmax(perframe_logits, dim=1), dim=1).squeeze() # (1, num_frames_strided)
|
||||||
|
extended_preds = []
|
||||||
|
for i in perframe_preds:
|
||||||
|
extended_preds.extend([i.item()] * model_stride)
|
||||||
|
# len(extended_preds) is *num_frames_real*; for each frame of audio we know if it has a number in it.
|
||||||
|
triggered = False
|
||||||
|
timings = []
|
||||||
|
cur_timing = {}
|
||||||
|
for i, pred in enumerate(extended_preds):
|
||||||
|
if pred == 1:
|
||||||
|
if not triggered:
|
||||||
|
cur_timing['start'] = int((i * hop_length) / (sample_rate / 1000))
|
||||||
|
triggered = True
|
||||||
|
elif pred == 0:
|
||||||
|
if triggered:
|
||||||
|
cur_timing['end'] = int((i * hop_length) / (sample_rate / 1000))
|
||||||
|
timings.append(cur_timing)
|
||||||
|
cur_timing = {}
|
||||||
|
triggered = False
|
||||||
|
if cur_timing:
|
||||||
|
cur_timing['end'] = int(len(wav) / (sample_rate / 1000))
|
||||||
|
timings.append(cur_timing)
|
||||||
|
return timings
|
||||||
|
|
||||||
|
|
||||||
|
def get_language(wav: torch.Tensor,
|
||||||
|
model):
|
||||||
|
wav = torch.unsqueeze(wav, dim=0)
|
||||||
|
lang_logits = model(wav)[2]
|
||||||
|
lang_pred = torch.argmax(torch.softmax(lang_logits, dim=1), dim=1).item() # from 0 to len(languages) - 1
|
||||||
|
assert lang_pred < len(languages)
|
||||||
|
return languages[lang_pred]
|
||||||
|
|
||||||
|
|
||||||
|
def get_language_and_group(wav: torch.Tensor,
|
||||||
|
model,
|
||||||
|
lang_dict: dict,
|
||||||
|
lang_group_dict: dict,
|
||||||
|
top_n=1):
|
||||||
|
wav = torch.unsqueeze(wav, dim=0)
|
||||||
|
lang_logits, lang_group_logits = model(wav)
|
||||||
|
|
||||||
|
softm = torch.softmax(lang_logits, dim=1).squeeze()
|
||||||
|
softm_group = torch.softmax(lang_group_logits, dim=1).squeeze()
|
||||||
|
|
||||||
|
srtd = torch.argsort(softm, descending=True)
|
||||||
|
srtd_group = torch.argsort(softm_group, descending=True)
|
||||||
|
|
||||||
|
outs = []
|
||||||
|
outs_group = []
|
||||||
|
for i in range(top_n):
|
||||||
|
prob = round(softm[srtd[i]].item(), 2)
|
||||||
|
prob_group = round(softm_group[srtd_group[i]].item(), 2)
|
||||||
|
outs.append((lang_dict[str(srtd[i].item())], prob))
|
||||||
|
outs_group.append((lang_group_dict[str(srtd_group[i].item())], prob_group))
|
||||||
|
|
||||||
|
return outs, outs_group
|
||||||
|
|
||||||
|
|
||||||
class VADIterator:
|
class VADIterator:
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
model,
|
model,
|
||||||
@@ -393,7 +334,7 @@ class VADIterator:
|
|||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
model: preloaded .jit/.onnx silero VAD model
|
model: preloaded .jit silero VAD model
|
||||||
|
|
||||||
threshold: float (default - 0.5)
|
threshold: float (default - 0.5)
|
||||||
Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, probabilities ABOVE this value are considered as SPEECH.
|
Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, probabilities ABOVE this value are considered as SPEECH.
|
||||||
@@ -412,10 +353,6 @@ class VADIterator:
|
|||||||
self.model = model
|
self.model = model
|
||||||
self.threshold = threshold
|
self.threshold = threshold
|
||||||
self.sampling_rate = sampling_rate
|
self.sampling_rate = sampling_rate
|
||||||
|
|
||||||
if sampling_rate not in [8000, 16000]:
|
|
||||||
raise ValueError('VADIterator does not support sampling rates other than [8000, 16000]')
|
|
||||||
|
|
||||||
self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
||||||
self.speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
self.speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
||||||
self.reset_states()
|
self.reset_states()
|
||||||
@@ -427,7 +364,6 @@ class VADIterator:
|
|||||||
self.temp_end = 0
|
self.temp_end = 0
|
||||||
self.current_sample = 0
|
self.current_sample = 0
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def __call__(self, x, return_seconds=False):
|
def __call__(self, x, return_seconds=False):
|
||||||
"""
|
"""
|
||||||
x: torch.Tensor
|
x: torch.Tensor
|
||||||
@@ -453,7 +389,7 @@ class VADIterator:
|
|||||||
|
|
||||||
if (speech_prob >= self.threshold) and not self.triggered:
|
if (speech_prob >= self.threshold) and not self.triggered:
|
||||||
self.triggered = True
|
self.triggered = True
|
||||||
speech_start = self.current_sample - self.speech_pad_samples - window_size_samples
|
speech_start = self.current_sample - self.speech_pad_samples
|
||||||
return {'start': int(speech_start) if not return_seconds else round(speech_start / self.sampling_rate, 1)}
|
return {'start': int(speech_start) if not return_seconds else round(speech_start / self.sampling_rate, 1)}
|
||||||
|
|
||||||
if (speech_prob < self.threshold - 0.15) and self.triggered:
|
if (speech_prob < self.threshold - 0.15) and self.triggered:
|
||||||
@@ -462,7 +398,7 @@ class VADIterator:
|
|||||||
if self.current_sample - self.temp_end < self.min_silence_samples:
|
if self.current_sample - self.temp_end < self.min_silence_samples:
|
||||||
return None
|
return None
|
||||||
else:
|
else:
|
||||||
speech_end = self.temp_end + self.speech_pad_samples - window_size_samples
|
speech_end = self.temp_end + self.speech_pad_samples
|
||||||
self.temp_end = 0
|
self.temp_end = 0
|
||||||
self.triggered = False
|
self.triggered = False
|
||||||
return {'end': int(speech_end) if not return_seconds else round(speech_end / self.sampling_rate, 1)}
|
return {'end': int(speech_end) if not return_seconds else round(speech_end / self.sampling_rate, 1)}
|
||||||
|
|||||||
Reference in New Issue
Block a user