diff --git a/README.md b/README.md index 59cae76..5050042 100644 --- a/README.md +++ b/README.md @@ -15,7 +15,7 @@ This repository also includes Number Detector and Language classifier [models](h

- +

@@ -35,11 +35,11 @@ https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc- - **Fast** - One audio chunk (30+ ms) [takes](https://github.com/snakers4/silero-vad/wiki/Performance-Metrics#silero-vad-performance-metrics) around **1ms** to be processed on a single CPU thread. Using batching or GPU can also improve performance considerably. Under certain conditions ONNX may even run up to 2-3x faster. + One audio chunk (30+ ms) [takes](https://github.com/snakers4/silero-vad/wiki/Performance-Metrics#silero-vad-performance-metrics) less than **1ms** to be processed on a single CPU thread. Using batching or GPU can also improve performance considerably. Under certain conditions ONNX may even run up to 4-5x faster. - **Lightweight** - JIT model is less than one megabyte in size. + JIT model is around one megabyte in size. - **General** @@ -47,11 +47,11 @@ https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc- - **Flexible sampling rate** - Silero VAD [supports](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#sample-rate-comparison) **8000 Hz** and **16000 Hz** (PyTorch JIT) and **16000 Hz** (ONNX) [sampling rates](https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate). + Silero VAD [supports](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#sample-rate-comparison) **8000 Hz** and **16000 Hz** [sampling rates](https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate). - **Flexible chunk size** - Model was trained on audio chunks of different lengths. **30 ms**, **60 ms** and **100 ms** long chunks are supported directly, others may work as well. + Model was trained on **30 ms**. Longer chunks are supported directly, others may work as well. - **Highly Portable** diff --git a/files/silero_vad.jit b/files/silero_vad.jit index e29f1e1..7eddfeb 100644 Binary files a/files/silero_vad.jit and b/files/silero_vad.jit differ diff --git a/files/silero_vad.onnx b/files/silero_vad.onnx index 127ffc9..ffbfbba 100644 Binary files a/files/silero_vad.onnx and b/files/silero_vad.onnx differ diff --git a/utils_vad.py b/utils_vad.py index e4fcfbf..46318af 100644 --- a/utils_vad.py +++ b/utils_vad.py @@ -9,7 +9,7 @@ languages = ['ru', 'en', 'de', 'es'] class OnnxWrapper(): - def __init__(self, path, force_onnx_cpu): + def __init__(self, path, force_onnx_cpu=False): import numpy as np global np import onnxruntime @@ -21,12 +21,9 @@ class OnnxWrapper(): self.session.inter_op_num_threads = 1 self.reset_states() + self.sample_rates = [8000, 16000] - def reset_states(self): - self._h = np.zeros((2, 1, 64)).astype('float32') - self._c = np.zeros((2, 1, 64)).astype('float32') - - def __call__(self, x, sr: int): + def _validate_input(self, x, sr: int): if x.dim() == 1: x = x.unsqueeze(0) if x.dim() > 2: @@ -37,23 +34,62 @@ class OnnxWrapper(): x = x[::step] sr = 16000 - if x.shape[0] > 1: - raise ValueError("Onnx model does not support batching") - - if sr not in [16000]: - raise ValueError(f"Supported sample rates: {[16000]}") + if sr not in self.sample_rates: + raise ValueError(f"Supported sampling rates: {self.sample_rates} (or multiply of 16000)") if sr / x.shape[1] > 31.25: raise ValueError("Input audio chunk is too short") - ort_inputs = {'input': x.numpy(), 'h0': self._h, 'c0': self._c} - ort_outs = self.session.run(None, ort_inputs) - out, self._h, self._c = ort_outs + return x, sr - out = torch.tensor(out).squeeze(2)[:, 1] # make output type match JIT analog + def reset_states(self, batch_size=1): + self._h = np.zeros((2, batch_size, 64)).astype('float32') + self._c = np.zeros((2, batch_size, 64)).astype('float32') + self._last_sr = 0 + self._last_batch_size = 0 + def __call__(self, x, sr: int): + + x, sr = self._validate_input(x, sr) + batch_size = x.shape[0] + + if not self._last_batch_size: + self.reset_states(batch_size) + if (self._last_sr) and (self._last_sr != sr): + self.reset_states(batch_size) + if (self._last_batch_size) and (self._last_batch_size != batch_size): + self.reset_states(batch_size) + + if sr in [8000, 16000]: + ort_inputs = {'input': x.numpy(), 'h': self._h, 'c': self._c, 'sr': np.array(sr)} + ort_outs = self.session.run(None, ort_inputs) + out, self._h, self._c = ort_outs + else: + raise ValueError() + + self._last_sr = sr + self._last_batch_size = batch_size + + out = torch.tensor(out) return out + def audio_forward(self, x, sr: int, num_samples: int = 512): + outs = [] + x, sr = self._validate_input(x, sr) + + if x.shape[1] % num_samples: + pad_num = num_samples - (x.shape[1] % num_samples) + x = torch.nn.functional.pad(x, (0, pad_num), 'constant', value=0.0) + + self.reset_states(x.shape[0]) + for i in range(0, x.shape[1], num_samples): + wavs_batch = x[:, i:i+num_samples] + out_chunk = self.__call__(wavs_batch, sr) + outs.append(out_chunk) + + stacked = torch.cat(outs, dim=1) + return stacked.cpu() + class Validator(): def __init__(self, url, force_onnx_cpu): @@ -128,7 +164,7 @@ def get_speech_timestamps(audio: torch.Tensor, sampling_rate: int = 16000, min_speech_duration_ms: int = 250, min_silence_duration_ms: int = 100, - window_size_samples: int = 1536, + window_size_samples: int = 512, speech_pad_ms: int = 30, return_seconds: bool = False, visualize_probs: bool = False):