add main utils and notebook

This commit is contained in:
adamnsandle
2020-12-11 13:33:26 +00:00
parent 12addc3187
commit cef1644a5f
3 changed files with 532 additions and 8 deletions

218
utils.py
View File

@@ -2,6 +2,11 @@ import torch
import tempfile
import torchaudio
from typing import List
import torch.nn as nn
import torch.nn.functional as F
from collections import deque
import numpy as np
from itertools import repeat
torchaudio.set_audio_backend("soundfile") # switch backend
@@ -48,13 +53,210 @@ def prepare_model_input(batch: List[torch.Tensor],
return inputs
def init_jit_model(model_url: str,
device: torch.device = torch.device('cpu')):
#def init_jit_model(model_url: str,
# device: torch.device = torch.device('cpu')):
# torch.set_grad_enabled(False)
# with tempfile.NamedTemporaryFile('wb', suffix='.model') as f:
# torch.hub.download_url_to_file(model_url,
# f.name,
# progress=True)
# model = torch.jit.load(f.name, map_location=device)
# model.eval()
# return model
def init_jit_model(model_path,
device):
torch.set_grad_enabled(False)
with tempfile.NamedTemporaryFile('wb', suffix='.model') as f:
torch.hub.download_url_to_file(model_url,
f.name,
progress=True)
model = torch.jit.load(f.name, map_location=device)
model.eval()
model = torch.jit.load(model_path, map_location=device)
model.eval()
return model
def get_speech_ts(wav, model, extractor, trig_sum=0.25, neg_trig_sum=0.01, num_steps=8, batch_size=200):
assert 4000 % num_steps == 0
step = int(4000 / num_steps)
outs = []
to_concat = []
for i in range(0, len(wav), step):
chunk = wav[i: i+4000]
if len(chunk) < 4000:
chunk = F.pad(chunk, (0, 4000 - len(chunk)))
to_concat.append(chunk)
if len(to_concat) >= batch_size:
chunks = torch.Tensor(torch.vstack(to_concat))
with torch.no_grad():
out = model(extractor(chunks))[-2]
outs.append(out)
to_concat = []
if to_concat:
chunks = torch.Tensor(torch.vstack(to_concat))
with torch.no_grad():
out = model(extractor(chunks))[-2]
outs.append(out)
outs = torch.cat(outs, dim=0)
buffer = deque(maxlen=num_steps)
triggered = False
speeches = []
current_speech = {}
for i, predict in enumerate(outs[:, 1]):
buffer.append(predict)
if (np.mean(buffer) >= trig_sum) and not triggered:
triggered = True
current_speech['start'] = step * max(0, i-num_steps)
if (np.mean(buffer) < neg_trig_sum) and triggered:
current_speech['end'] = step * i
if (current_speech['end'] - current_speech['start']) > 10000:
speeches.append(current_speech)
current_speech = {}
triggered = False
if current_speech:
current_speech['end'] = len(wav)
speeches.append(current_speech)
return speeches
class STFTExtractor(nn.Module):
def __init__(self, sr=16000, win_size=0.02, mode='mag'):
super(STFTExtractor, self).__init__()
self.sr = sr
self.n_fft = int(sr * (win_size + 1e-8))
self.win_length = self.n_fft
self.hop_length = self.win_length // 2
self.mode = 'mag' if mode == '' else mode
def forward(self, wav):
# center==True because other frame-level features are centered by default in torch/librosa and we can't change this.
stft_sample = torch.stft(wav,
n_fft=self.n_fft,
win_length=self.win_length,
hop_length=self.hop_length,
center=True)
mag, phase = torchaudio.functional.magphase(stft_sample)
# It seems it is not a "mag", it is "power" (exp == 1).
# Also there is "energy" (exp == 2).
if self.mode == 'mag':
return mag
if self.mode == 'phase':
return phase
elif self.mode == 'magphase':
return torch.cat([mag * torch.cos(phase), mag * torch.sin(phase)], dim=1)
else:
raise NotImplementedError()
class VADiterator:
def __init__(self, trig_sum=0.26, neg_trig_sum=0.01, num_steps=8):
self.num_steps = num_steps
assert 4000 % num_steps == 0
self.step = int(4000 / num_steps)
self.prev = torch.zeros(4000)
self.last = False
self.triggered = False
self.buffer = deque(maxlen=8)
self.num_frames = 0
self.trig_sum = trig_sum
self.neg_trig_sum = neg_trig_sum
self.current_name = ''
def refresh(self):
self.prev = torch.zeros(4000)
self.last = False
self.triggered = False
self.buffer = deque(maxlen=8)
self.num_frames = 0
def prepare_batch(self, wav_chunk, name=None):
if (name is not None) and (name != self.current_name):
self.refresh()
self.current_name = name
assert len(wav_chunk) <= 4000
self.num_frames += len(wav_chunk)
if len(wav_chunk) < 4000:
wav_chunk = F.pad(wav_chunk, (0, 4000 - len(wav_chunk))) # assume that short chunk means end of the audio
self.last = True
stacked = torch.hstack([self.prev, wav_chunk])
self.prev = wav_chunk
overlap_chunks = [stacked[i:i+4000] for i in range(500, 4001, self.step)] # 500 step is good enough
return torch.vstack(overlap_chunks)
def state(self, model_out):
current_speech = {}
for i, predict in enumerate(model_out[:, 1]):
self.buffer.append(predict)
if (np.mean(self.buffer) >= self.trig_sum) and not self.triggered:
self.triggered = True
current_speech[self.num_frames - (self.num_steps-i) * self.step] = 'start'
if (np.mean(self.buffer) < self.neg_trig_sum) and self.triggered:
current_speech[self.num_frames - (self.num_steps-i) * self.step] = 'end'
self.triggered = False
if self.triggered and self.last:
current_speech[self.num_frames] = 'end'
if self.last:
self.refresh()
return current_speech, self.current_name
def state_generator(model, audios, extractor, onnx=False, trig_sum=0.26, neg_trig_sum=0.01, num_steps=8, audios_in_stream=5):
VADiters = [VADiterator(trig_sum, neg_trig_sum, num_steps) for i in range(audios_in_stream)]
for i, current_pieces in enumerate(stream_imitator(audios, audios_in_stream)):
for_batch = [x.prepare_batch(*y) for x, y in zip(VADiters, current_pieces)]
batch = torch.cat(for_batch)
with torch.no_grad():
if onnx:
ort_inputs = {'input': to_numpy(extractor(batch))}
ort_outs = model.run(None, ort_inputs)
vad_outs = np.split(ort_outs[-2], audios_in_stream)
else:
outs = model(extractor(batch))
vad_outs = np.split(outs[-2].numpy(), audios_in_stream)
states = []
for x, y in zip(VADiters, vad_outs):
cur_st = x.state(y)
if cur_st[0]:
states.append(cur_st)
yield states
def stream_imitator(stereo, audios_in_stream):
stereo_iter = iter(stereo)
iterators = []
# initial wavs
for i in range(audios_in_stream):
next_wav = next(stereo_iter)
wav = read_audio(next_wav)
wav_chunks = iter([(wav[i:i+4000], next_wav) for i in range(0, len(wav), 4000)])
iterators.append(wav_chunks)
print('Done initial Loading')
good_iters = audios_in_stream
while True:
values = []
for i, it in enumerate(iterators):
try:
out, wav_name = next(it)
except StopIteration:
try:
next_wav = next(stereo_iter)
print('Loading next wav: ', next_wav)
wav = read_audio(next_wav)
iterators[i] = iter([(wav[i:i+4000], next_wav) for i in range(0, len(wav), 4000)])
out, wav_name = next(iterators[i])
except StopIteration:
good_iters -= 1
iterators[i] = repeat((torch.zeros(4000), 'junk'))
out, wav_name = next(iterators[i])
if good_iters == 0:
return
values.append((out, wav_name))
yield values