diff --git a/examples/microphone_and_webRTC_integration/README.md b/examples/microphone_and_webRTC_integration/README.md new file mode 100644 index 0000000..98982cc --- /dev/null +++ b/examples/microphone_and_webRTC_integration/README.md @@ -0,0 +1,28 @@ + +In this example, an integration with the microphone and the webRTC VAD has been done. I used [this](https://github.com/mozilla/DeepSpeech-examples/tree/r0.8/mic_vad_streaming) as a draft. +Here a short video to present the results: + +https://user-images.githubusercontent.com/28188499/116685087-182ff100-a9b2-11eb-927d-ed9f621226ee.mp4 + +# Requirements: +The libraries used for the following example are: +``` +Python == 3.6.9 +webrtcvad >= 2.0.10 +torchaudio >= 0.8.1 +torch >= 1.8.1 +halo >= 0.0.31 +Soundfile >= 0.13.3 +``` +Using pip3: +``` +pip3 install webrtcvad +pip3 install torchaudio +pip3 install torch +pip3 install halo +pip3 install soundfile +``` +Moreover, to make the code easier, the default sample_rate is 16KHz without resampling. + +This example has been tested on ``` ubuntu 18.04.3 LTS``` + diff --git a/examples/microphone_and_webRTC_integration/microphone_and_webRTC_integration.py b/examples/microphone_and_webRTC_integration/microphone_and_webRTC_integration.py new file mode 100644 index 0000000..2474657 --- /dev/null +++ b/examples/microphone_and_webRTC_integration/microphone_and_webRTC_integration.py @@ -0,0 +1,201 @@ +import collections, queue +import numpy as np +import pyaudio +import webrtcvad +from halo import Halo +import torch +import torchaudio + +class Audio(object): + """Streams raw audio from microphone. Data is received in a separate thread, and stored in a buffer, to be read from.""" + + FORMAT = pyaudio.paInt16 + # Network/VAD rate-space + RATE_PROCESS = 16000 + CHANNELS = 1 + BLOCKS_PER_SECOND = 50 + + def __init__(self, callback=None, device=None, input_rate=RATE_PROCESS): + def proxy_callback(in_data, frame_count, time_info, status): + #pylint: disable=unused-argument + callback(in_data) + return (None, pyaudio.paContinue) + if callback is None: callback = lambda in_data: self.buffer_queue.put(in_data) + self.buffer_queue = queue.Queue() + self.device = device + self.input_rate = input_rate + self.sample_rate = self.RATE_PROCESS + self.block_size = int(self.RATE_PROCESS / float(self.BLOCKS_PER_SECOND)) + self.block_size_input = int(self.input_rate / float(self.BLOCKS_PER_SECOND)) + self.pa = pyaudio.PyAudio() + + kwargs = { + 'format': self.FORMAT, + 'channels': self.CHANNELS, + 'rate': self.input_rate, + 'input': True, + 'frames_per_buffer': self.block_size_input, + 'stream_callback': proxy_callback, + } + + self.chunk = None + # if not default device + if self.device: + kwargs['input_device_index'] = self.device + + self.stream = self.pa.open(**kwargs) + self.stream.start_stream() + + def read(self): + """Return a block of audio data, blocking if necessary.""" + return self.buffer_queue.get() + + def destroy(self): + self.stream.stop_stream() + self.stream.close() + self.pa.terminate() + + frame_duration_ms = property(lambda self: 1000 * self.block_size // self.sample_rate) + + +class VADAudio(Audio): + """Filter & segment audio with voice activity detection.""" + + def __init__(self, aggressiveness=3, device=None, input_rate=None): + super().__init__(device=device, input_rate=input_rate) + self.vad = webrtcvad.Vad(aggressiveness) + + def frame_generator(self): + """Generator that yields all audio frames from microphone.""" + if self.input_rate == self.RATE_PROCESS: + while True: + yield self.read() + else: + raise Exception("Resampling required") + + def vad_collector(self, padding_ms=300, ratio=0.75, frames=None): + """Generator that yields series of consecutive audio frames comprising each utterence, separated by yielding a single None. + Determines voice activity by ratio of frames in padding_ms. Uses a buffer to include padding_ms prior to being triggered. + Example: (frame, ..., frame, None, frame, ..., frame, None, ...) + |---utterence---| |---utterence---| + """ + if frames is None: frames = self.frame_generator() + num_padding_frames = padding_ms // self.frame_duration_ms + ring_buffer = collections.deque(maxlen=num_padding_frames) + triggered = False + + for frame in frames: + if len(frame) < 640: + return + + is_speech = self.vad.is_speech(frame, self.sample_rate) + + if not triggered: + ring_buffer.append((frame, is_speech)) + num_voiced = len([f for f, speech in ring_buffer if speech]) + if num_voiced > ratio * ring_buffer.maxlen: + triggered = True + for f, s in ring_buffer: + yield f + ring_buffer.clear() + + else: + yield frame + ring_buffer.append((frame, is_speech)) + num_unvoiced = len([f for f, speech in ring_buffer if not speech]) + if num_unvoiced > ratio * ring_buffer.maxlen: + triggered = False + yield None + ring_buffer.clear() + +def main(ARGS): + # Start audio with VAD + vad_audio = VADAudio(aggressiveness=ARGS.webRTC_aggressiveness, + device=ARGS.device, + input_rate=ARGS.rate) + + print("Listening (ctrl-C to exit)...") + frames = vad_audio.vad_collector() + + # load silero VAD + torchaudio.set_audio_backend("soundfile") + model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad', + model=ARGS.silaro_model_name, + force_reload= ARGS.reload) + (get_speech_ts,_,_, _,_, _, _) = utils + + + # Stream from microphone to DeepSpeech using VAD + spinner = None + if not ARGS.nospinner: + spinner = Halo(spinner='line') + wav_data = bytearray() + for frame in frames: + if frame is not None: + if spinner: spinner.start() + + wav_data.extend(frame) + else: + if spinner: spinner.stop() + print("webRTC has detected a possible speech") + + newsound= np.frombuffer(wav_data,np.int16) + audio_float32=Int2Float(newsound) + time_stamps =get_speech_ts(audio_float32, model,num_steps=ARGS.num_steps,trig_sum=ARGS.trig_sum,neg_trig_sum=ARGS.neg_trig_sum, + num_samples_per_window=ARGS.num_samples_per_window,min_speech_samples=ARGS.min_speech_samples, + min_silence_samples=ARGS.min_silence_samples) + + if(len(time_stamps)>0): + print("silero VAD has detected a possible speech") + else: + print("silero VAD has detected a noise") + print() + wav_data = bytearray() + + +def Int2Float(sound): + _sound = np.copy(sound) # + abs_max = np.abs(_sound).max() + _sound = _sound.astype('float32') + if abs_max > 0: + _sound *= 1/abs_max + audio_float32 = torch.from_numpy(_sound.squeeze()) + return audio_float32 + +if __name__ == '__main__': + DEFAULT_SAMPLE_RATE = 16000 + + import argparse + parser = argparse.ArgumentParser(description="Stream from microphone to webRTC and silero VAD") + + parser.add_argument('-v', '--webRTC_aggressiveness', type=int, default=3, + help="Set aggressiveness of webRTC: an integer between 0 and 3, 0 being the least aggressive about filtering out non-speech, 3 the most aggressive. Default: 3") + parser.add_argument('--nospinner', action='store_true', + help="Disable spinner") + parser.add_argument('-d', '--device', type=int, default=None, + help="Device input index (Int) as listed by pyaudio.PyAudio.get_device_info_by_index(). If not provided, falls back to PyAudio.get_default_device().") + + parser.add_argument('-name', '--silaro_model_name', type=str, default="silero_vad", + help="select the name of the model. You can select between 'silero_vad',''silero_vad_micro','silero_vad_micro_8k','silero_vad_mini','silero_vad_mini_8k'") + parser.add_argument('--reload', action='store_true',help="download the last version of the silero vad") + + parser.add_argument('-ts', '--trig_sum', type=float, default=0.25, + help="overlapping windows are used for each audio chunk, trig sum defines average probability among those windows for switching into triggered state (speech state)") + + parser.add_argument('-nts', '--neg_trig_sum', type=float, default=0.07, + help="same as trig_sum, but for switching from triggered to non-triggered state (non-speech)") + + parser.add_argument('-N', '--num_steps', type=int, default=8, + help="nubmer of overlapping windows to split audio chunk into (we recommend 4 or 8)") + + parser.add_argument('-nspw', '--num_samples_per_window', type=int, default=4000, + help="number of samples in each window, our models were trained using 4000 samples (250 ms) per window, so this is preferable value (lesser values reduce quality)") + + parser.add_argument('-msps', '--min_speech_samples', type=int, default=10000, + help="minimum speech chunk duration in samples") + + parser.add_argument('-msis', '--min_silence_samples', type=int, default=500, + help=" minimum silence duration in samples between to separate speech chunks") + ARGS = parser.parse_args() + ARGS.rate=DEFAULT_SAMPLE_RATE + main(ARGS) \ No newline at end of file