mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-04 17:39:22 +08:00
Update SlieroVadOnnxModel.java
This commit is contained in:
@@ -9,42 +9,58 @@ import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* Silero VAD ONNX Model Wrapper
|
||||
*
|
||||
* @author VvvvvGH
|
||||
*/
|
||||
public class SlieroVadOnnxModel {
|
||||
// Define private variable OrtSession
|
||||
// ONNX runtime session
|
||||
private final OrtSession session;
|
||||
private float[][][] h;
|
||||
private float[][][] c;
|
||||
// Define the last sample rate
|
||||
// Model state - dimensions: [2, batch_size, 128]
|
||||
private float[][][] state;
|
||||
// Context - stores the tail of the previous audio chunk
|
||||
private float[][] context;
|
||||
// Last sample rate
|
||||
private int lastSr = 0;
|
||||
// Define the last batch size
|
||||
// Last batch size
|
||||
private int lastBatchSize = 0;
|
||||
// Define a list of supported sample rates
|
||||
// Supported sample rates
|
||||
private static final List<Integer> SAMPLE_RATES = Arrays.asList(8000, 16000);
|
||||
|
||||
// Constructor
|
||||
public SlieroVadOnnxModel(String modelPath) throws OrtException {
|
||||
// Get the ONNX runtime environment
|
||||
OrtEnvironment env = OrtEnvironment.getEnvironment();
|
||||
// Create an ONNX session options object
|
||||
// Create ONNX session options
|
||||
OrtSession.SessionOptions opts = new OrtSession.SessionOptions();
|
||||
// Set the InterOp thread count to 1, InterOp threads are used for parallel processing of different computation graph operations
|
||||
// Set InterOp thread count to 1 (for parallel processing of different graph operations)
|
||||
opts.setInterOpNumThreads(1);
|
||||
// Set the IntraOp thread count to 1, IntraOp threads are used for parallel processing within a single operation
|
||||
// Set IntraOp thread count to 1 (for parallel processing within a single operation)
|
||||
opts.setIntraOpNumThreads(1);
|
||||
// Add a CPU device, setting to false disables CPU execution optimization
|
||||
// Enable CPU execution optimization
|
||||
opts.addCPU(true);
|
||||
// Create an ONNX session using the environment, model path, and options
|
||||
// Create ONNX session with the environment, model path, and options
|
||||
session = env.createSession(modelPath, opts);
|
||||
// Reset states
|
||||
resetStates();
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset states
|
||||
* Reset states with default batch size
|
||||
*/
|
||||
void resetStates() {
|
||||
h = new float[2][1][64];
|
||||
c = new float[2][1][64];
|
||||
resetStates(1);
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset states with specific batch size
|
||||
*
|
||||
* @param batchSize Batch size for state initialization
|
||||
*/
|
||||
void resetStates(int batchSize) {
|
||||
state = new float[2][batchSize][128];
|
||||
context = new float[0][]; // Empty context
|
||||
lastSr = 0;
|
||||
lastBatchSize = 0;
|
||||
}
|
||||
@@ -54,13 +70,12 @@ public class SlieroVadOnnxModel {
|
||||
}
|
||||
|
||||
/**
|
||||
* Define inner class ValidationResult
|
||||
* Inner class for validation result
|
||||
*/
|
||||
public static class ValidationResult {
|
||||
public final float[][] x;
|
||||
public final int sr;
|
||||
|
||||
// Constructor
|
||||
public ValidationResult(float[][] x, int sr) {
|
||||
this.x = x;
|
||||
this.sr = sr;
|
||||
@@ -68,19 +83,23 @@ public class SlieroVadOnnxModel {
|
||||
}
|
||||
|
||||
/**
|
||||
* Function to validate input data
|
||||
* Validate input data
|
||||
*
|
||||
* @param x Audio data array
|
||||
* @param sr Sample rate
|
||||
* @return Validated input data and sample rate
|
||||
*/
|
||||
private ValidationResult validateInput(float[][] x, int sr) {
|
||||
// Process the input data with dimension 1
|
||||
// Ensure input is at least 2D
|
||||
if (x.length == 1) {
|
||||
x = new float[][]{x[0]};
|
||||
}
|
||||
// Throw an exception when the input data dimension is greater than 2
|
||||
// Check if input dimension is valid
|
||||
if (x.length > 2) {
|
||||
throw new IllegalArgumentException("Incorrect audio data dimension: " + x[0].length);
|
||||
}
|
||||
|
||||
// Process the input data when the sample rate is not equal to 16000 and is a multiple of 16000
|
||||
// Downsample if sample rate is a multiple of 16000
|
||||
if (sr != 16000 && (sr % 16000 == 0)) {
|
||||
int step = sr / 16000;
|
||||
float[][] reducedX = new float[x.length][];
|
||||
@@ -100,22 +119,26 @@ public class SlieroVadOnnxModel {
|
||||
sr = 16000;
|
||||
}
|
||||
|
||||
// If the sample rate is not in the list of supported sample rates, throw an exception
|
||||
// Validate sample rate
|
||||
if (!SAMPLE_RATES.contains(sr)) {
|
||||
throw new IllegalArgumentException("Only supports sample rates " + SAMPLE_RATES + " (or multiples of 16000)");
|
||||
}
|
||||
|
||||
// If the input audio block is too short, throw an exception
|
||||
// Check if audio chunk is too short
|
||||
if (((float) sr) / x[0].length > 31.25) {
|
||||
throw new IllegalArgumentException("Input audio is too short");
|
||||
}
|
||||
|
||||
// Return the validated result
|
||||
return new ValidationResult(x, sr);
|
||||
}
|
||||
|
||||
/**
|
||||
* Method to call the ONNX model
|
||||
* Call the ONNX model for inference
|
||||
*
|
||||
* @param x Audio data array
|
||||
* @param sr Sample rate
|
||||
* @return Speech probability output
|
||||
* @throws OrtException If ONNX runtime error occurs
|
||||
*/
|
||||
public float[] call(float[][] x, int sr) throws OrtException {
|
||||
ValidationResult result = validateInput(x, sr);
|
||||
@@ -123,38 +146,62 @@ public class SlieroVadOnnxModel {
|
||||
sr = result.sr;
|
||||
|
||||
int batchSize = x.length;
|
||||
int numSamples = sr == 16000 ? 512 : 256;
|
||||
int contextSize = sr == 16000 ? 64 : 32;
|
||||
|
||||
if (lastBatchSize == 0 || lastSr != sr || lastBatchSize != batchSize) {
|
||||
resetStates();
|
||||
// Reset states only when sample rate or batch size changes
|
||||
if (lastSr != 0 && lastSr != sr) {
|
||||
resetStates(batchSize);
|
||||
} else if (lastBatchSize != 0 && lastBatchSize != batchSize) {
|
||||
resetStates(batchSize);
|
||||
} else if (lastBatchSize == 0) {
|
||||
// First call - state is already initialized, just set batch size
|
||||
lastBatchSize = batchSize;
|
||||
}
|
||||
|
||||
// Initialize context if needed
|
||||
if (context.length == 0) {
|
||||
context = new float[batchSize][contextSize];
|
||||
}
|
||||
|
||||
// Concatenate context and input
|
||||
float[][] xWithContext = new float[batchSize][contextSize + numSamples];
|
||||
for (int i = 0; i < batchSize; i++) {
|
||||
// Copy context
|
||||
System.arraycopy(context[i], 0, xWithContext[i], 0, contextSize);
|
||||
// Copy input
|
||||
System.arraycopy(x[i], 0, xWithContext[i], contextSize, numSamples);
|
||||
}
|
||||
|
||||
OrtEnvironment env = OrtEnvironment.getEnvironment();
|
||||
|
||||
OnnxTensor inputTensor = null;
|
||||
OnnxTensor hTensor = null;
|
||||
OnnxTensor cTensor = null;
|
||||
OnnxTensor stateTensor = null;
|
||||
OnnxTensor srTensor = null;
|
||||
OrtSession.Result ortOutputs = null;
|
||||
|
||||
try {
|
||||
// Create input tensors
|
||||
inputTensor = OnnxTensor.createTensor(env, x);
|
||||
hTensor = OnnxTensor.createTensor(env, h);
|
||||
cTensor = OnnxTensor.createTensor(env, c);
|
||||
inputTensor = OnnxTensor.createTensor(env, xWithContext);
|
||||
stateTensor = OnnxTensor.createTensor(env, state);
|
||||
srTensor = OnnxTensor.createTensor(env, new long[]{sr});
|
||||
|
||||
Map<String, OnnxTensor> inputs = new HashMap<>();
|
||||
inputs.put("input", inputTensor);
|
||||
inputs.put("sr", srTensor);
|
||||
inputs.put("h", hTensor);
|
||||
inputs.put("c", cTensor);
|
||||
inputs.put("state", stateTensor);
|
||||
|
||||
// Call the ONNX model for calculation
|
||||
// Run ONNX model inference
|
||||
ortOutputs = session.run(inputs);
|
||||
// Get the output results
|
||||
// Get output results
|
||||
float[][] output = (float[][]) ortOutputs.get(0).getValue();
|
||||
h = (float[][][]) ortOutputs.get(1).getValue();
|
||||
c = (float[][][]) ortOutputs.get(2).getValue();
|
||||
state = (float[][][]) ortOutputs.get(1).getValue();
|
||||
|
||||
// Update context - save the last contextSize samples from input
|
||||
for (int i = 0; i < batchSize; i++) {
|
||||
System.arraycopy(xWithContext[i], xWithContext[i].length - contextSize,
|
||||
context[i], 0, contextSize);
|
||||
}
|
||||
|
||||
lastSr = sr;
|
||||
lastBatchSize = batchSize;
|
||||
@@ -163,11 +210,8 @@ public class SlieroVadOnnxModel {
|
||||
if (inputTensor != null) {
|
||||
inputTensor.close();
|
||||
}
|
||||
if (hTensor != null) {
|
||||
hTensor.close();
|
||||
}
|
||||
if (cTensor != null) {
|
||||
cTensor.close();
|
||||
if (stateTensor != null) {
|
||||
stateTensor.close();
|
||||
}
|
||||
if (srTensor != null) {
|
||||
srTensor.close();
|
||||
|
||||
Reference in New Issue
Block a user