mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-05 18:09:22 +08:00
Mv folder
This commit is contained in:
154
README.md
Normal file
154
README.md
Normal file
@@ -0,0 +1,154 @@
|
||||
[](mailto:hello@silero.ai) [](https://t.me/joinchat/Bv9tjhpdXTI22OUgpOIIDg) [](https://github.com/snakers4/silero-models/blob/master/LICENSE)
|
||||
|
||||
[](https://pytorch.org/hub/snakers4_silero-models_stt/) [](https://tfhub.dev/silero/collections/silero-stt/1)
|
||||
|
||||
[](https://colab.research.google.com/github/snakers4/silero-models/blob/master/examples.ipynb)
|
||||
|
||||

|
||||
|
||||
- [Silero VAD](#silero-vad)
|
||||
- [Getting Started](#getting-started)
|
||||
- [PyTorch](#pytorch)
|
||||
- [ONNX](#onnx)
|
||||
- [Metrics](#metrics)
|
||||
- [Performance Metrics](#performance-metrics)
|
||||
- [Quality Metrics](#quality-metrics)
|
||||
- [Contact](#contact)
|
||||
- [Get in Touch](#get-in-touch)
|
||||
- [Commercial Inquiries](#commercial-inquiries)
|
||||
|
||||
|
||||
# Silero VAD
|
||||
|
||||
Silero VAD: pre-trained enterprise-grade Voice Activity and Number Detector.
|
||||
Enterprise-grade Speech Products made refreshingly simple (all see our [STT](https://github.com/snakers4/silero-models)).
|
||||
|
||||
Currently, there are hardly any high quality / modern / free / public voice activity detectors except for WebRTC Voice Activity Detector ([link](https://github.com/wiseman/py-webrtcvad)).
|
||||
|
||||
Also in enterprise it is crucial to be able to anonymize large-scale spoken corpora (i.e. remove personal data). Typically personal data is considered to be private / sensitive if it contains (i) a name (ii) some private ID. Name recognition is highly subjective and would depend on location, but Voice Activity and Number detections are quite general tasks.
|
||||
|
||||
**Key advantages:**
|
||||
|
||||
- Modern, portable;
|
||||
- Small memory footprint (?);
|
||||
- Trained on huge spoken corpora and noise / sound libraries;
|
||||
- Slower than WebRTC, but sufficiently fast for IOT / edge / mobile applications;
|
||||
|
||||
**Typical use cases:**
|
||||
|
||||
- Spoken corpora anonymization;
|
||||
- Voice detection for IOT / edge / mobile use cases;
|
||||
- Data cleaning and preparation, number and voice detection in general;
|
||||
|
||||
|
||||
Key features / differences:
|
||||
|
||||
## Getting Started
|
||||
|
||||
All of the provided models are listed in the [models.yml](https://github.com/snakers4/silero-models/blob/master/models.yml) file.
|
||||
Any meta-data and newer versions will be added there.
|
||||
|
||||
Currently we provide the following checkpoints:
|
||||
|
||||
| | PyTorch | ONNX | Quantization | Languages | Colab |
|
||||
|-----------------|--------------------|--------------------|--------------|---------|-------|
|
||||
| VAD v1 (vad_v1) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | `ru`, `en`, `de`, `es` | [](https://colab.research.google.com/github/snakers4/silero-models/blob/master/examples.ipynb) |
|
||||
|
||||
|
||||
### PyTorch
|
||||
|
||||
[](https://colab.research.google.com/github/snakers4/silero-models/blob/master/examples.ipynb)
|
||||
|
||||
[](https://pytorch.org/hub/snakers4_silero-models_stt/)
|
||||
|
||||
```python
|
||||
import torch
|
||||
import zipfile
|
||||
import torchaudio
|
||||
from glob import glob
|
||||
|
||||
device = torch.device('cpu') # gpu also works, but our models are fast enough for CPU
|
||||
model, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models',
|
||||
model='silero_stt',
|
||||
language='en', # also available 'de', 'es'
|
||||
device=device)
|
||||
(read_batch, split_into_batches,
|
||||
read_audio, prepare_model_input) = utils # see function signature for details
|
||||
|
||||
# download a single file, any format compatible with TorchAudio (soundfile backend)
|
||||
torch.hub.download_url_to_file('https://opus-codec.org/static/examples/samples/speech_orig.wav',
|
||||
dst ='speech_orig.wav', progress=True)
|
||||
test_files = glob('speech_orig.wav')
|
||||
batches = split_into_batches(test_files, batch_size=10)
|
||||
input = prepare_model_input(read_batch(batches[0]),
|
||||
device=device)
|
||||
|
||||
output = model(input)
|
||||
for example in output:
|
||||
print(decoder(example.cpu()))
|
||||
```
|
||||
|
||||
### ONNX
|
||||
|
||||
[](https://colab.research.google.com/github/snakers4/silero-models/blob/master/examples.ipynb)
|
||||
|
||||
You can run our model everywhere, where you can import the ONNX model or run ONNX runtime.
|
||||
|
||||
```python
|
||||
import onnx
|
||||
import torch
|
||||
import onnxruntime
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
language = 'en' # also available 'de', 'es'
|
||||
|
||||
# load provided utils
|
||||
_, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models', model='silero_stt', language=language)
|
||||
(read_batch, split_into_batches,
|
||||
read_audio, prepare_model_input) = utils
|
||||
|
||||
# see available models
|
||||
torch.hub.download_url_to_file('https://raw.githubusercontent.com/snakers4/silero-models/master/models.yml', 'models.yml')
|
||||
models = OmegaConf.load('models.yml')
|
||||
available_languages = list(models.stt_models.keys())
|
||||
assert language in available_languages
|
||||
|
||||
# load the actual ONNX model
|
||||
torch.hub.download_url_to_file(models.stt_models.en.latest.onnx, 'model.onnx', progress=True)
|
||||
onnx_model = onnx.load('model.onnx')
|
||||
onnx.checker.check_model(onnx_model)
|
||||
ort_session = onnxruntime.InferenceSession('model.onnx')
|
||||
|
||||
# download a single file, any format compatible with TorchAudio (soundfile backend)
|
||||
torch.hub.download_url_to_file('https://opus-codec.org/static/examples/samples/speech_orig.wav', dst ='speech_orig.wav', progress=True)
|
||||
test_files = ['speech_orig.wav']
|
||||
batches = split_into_batches(test_files, batch_size=10)
|
||||
input = prepare_model_input(read_batch(batches[0]))
|
||||
|
||||
# actual onnx inference and decoding
|
||||
onnx_input = input.detach().cpu().numpy()
|
||||
ort_inputs = {'input': onnx_input}
|
||||
ort_outs = ort_session.run(None, ort_inputs)
|
||||
decoded = decoder(torch.Tensor(ort_outs[0])[0])
|
||||
print(decoded)
|
||||
```
|
||||
|
||||
## Metrics
|
||||
|
||||
### Performance Metrics
|
||||
|
||||
Speed metrics here.
|
||||
|
||||
### Quality Metrics
|
||||
|
||||
Quality metrics here.
|
||||
|
||||
## Contact
|
||||
|
||||
### Get in Touch
|
||||
|
||||
Try our models, create an [issue](https://github.com/snakers4/silero-models/issues/new), join our [chat](https://t.me/joinchat/Bv9tjhpdXTI22OUgpOIIDg), [email](mailto:hello@silero.ai) us.
|
||||
|
||||
### Commercial Inquiries
|
||||
|
||||
Please see our [wiki](https://github.com/snakers4/silero-models/wiki) and [tiers](https://github.com/snakers4/silero-models/wiki/Licensing-and-Tiers) for relevant information and [email](mailto:hello@silero.ai) us.
|
||||
Reference in New Issue
Block a user