добавлен поиск порогов

This commit is contained in:
adamnsandle
2024-08-19 16:53:28 +00:00
parent e706ec6fee
commit 827e86e685
6 changed files with 138 additions and 25 deletions

View File

@@ -7,12 +7,12 @@
## Зависимости
Следующие зависимости используются при тюнинге VAD модели:
- `torch>=1.12.0`
- `torchaudio>=0.12.0`
- `sklearn>=1.2.0`
- `tqdm`
- `pandas>=2.2.2`
- `omegaconf>=2.3.0`
- `sklearn>=1.2.0`
- `torch>=1.12.0`
- `pandas>=2.2.2`
- `tqdm`
## Подготовка данных
@@ -29,6 +29,7 @@
Файл конфигурации `config.yml` содержит пути до обучающей и валидационной выборки, а также параметры дообучения:
- `train_dataset_path` - абсолютный путь до тренировочного датафрейма в формате `.feather`. Должен содержать колонки `audio_path` и `speech_ts`, описанные в пункте "Подготовка данных". Пример устройства датафрейма можно посмотреть в `example_dataframe.feather`;
- `val_dataset_path` - абсолютный путь до валидационного датафрейма в формате `.feather`. Должен содержать колонки `audio_path` и `speech_ts`, описанные в пункте "Подготовка данных". Пример устройства датафрейма можно посмотреть в `example_dataframe.feather`;
- `jit_model_path` - абсолютный путь до Silero-VAD модели в формате `.jit`. Если оставить это поле пустым, то модель будет загружена из репозитория в зависимости от значения поля `use_torchhub`
- `use_torchhub` - Если `True`, то модель для дообучения будет загружена с помощью torch.hub. Если `False`, то модель для дообучения будет загружена с помощью библиотеки silero-vad (необходимо заранее установить командой `pip install silero-vad`);
- `tune_8k` - данный параметр отвечает, какую голову Silero-VAD дообучать. Если `True`, дообучаться будет голова с 8000 Гц частотой дискретизации, иначе с 16000 Гц;
- `model_save_path` - путь сохранения добученной модели;
@@ -43,17 +44,27 @@
## Дообучение
Дообучение запускается командой `python tune.py`
Дообучение запускается командой
`python tune.py`
Длится в течение `num_epochs`, лучший чекпоинт по показателю ROC-AUC на валидационной выборке будет сохранен в `model_save_path` в формате jit.
## Поиск пороговых значений
Порог на вход и порог на выход можно подобрать, используя команду
`python search_thresholds`
Данный скрипт использует файл конфигурации, описанный выше. Указанная в конфигурации модель будет использована для поиска оптимальных порогов на валидационном датасете.
## Цитирование
```
@misc{Silero VAD,
author = {Silero Team},
title = {Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD), Number Detector and Language Classifier},
year = {2021},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/snakers4/silero-vad}},