mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-05 01:49:22 +08:00
v5 model cpp example
This commit is contained in:
@@ -2,13 +2,97 @@
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <chrono>
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <stdexcept>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include "onnxruntime_cxx_api.h"
|
||||
#include "wav.h"
|
||||
#include <cstdio>
|
||||
#include <cstdarg>
|
||||
#if __cplusplus < 201703L
|
||||
#include <memory>
|
||||
#endif
|
||||
|
||||
//#define __DEBUG_SPEECH_PROB___
|
||||
|
||||
class timestamp_t
|
||||
{
|
||||
public:
|
||||
int start;
|
||||
int end;
|
||||
|
||||
// default + parameterized constructor
|
||||
timestamp_t(int start = -1, int end = -1)
|
||||
: start(start), end(end)
|
||||
{
|
||||
};
|
||||
|
||||
// assignment operator modifies object, therefore non-const
|
||||
timestamp_t& operator=(const timestamp_t& a)
|
||||
{
|
||||
start = a.start;
|
||||
end = a.end;
|
||||
return *this;
|
||||
};
|
||||
|
||||
// equality comparison. doesn't modify object. therefore const.
|
||||
bool operator==(const timestamp_t& a) const
|
||||
{
|
||||
return (start == a.start && end == a.end);
|
||||
};
|
||||
std::string c_str()
|
||||
{
|
||||
//return std::format("timestamp {:08d}, {:08d}", start, end);
|
||||
return format("{start:%08d,end:%08d}", start, end);
|
||||
};
|
||||
private:
|
||||
|
||||
std::string format(const char* fmt, ...)
|
||||
{
|
||||
char buf[256];
|
||||
|
||||
va_list args;
|
||||
va_start(args, fmt);
|
||||
const auto r = std::vsnprintf(buf, sizeof buf, fmt, args);
|
||||
va_end(args);
|
||||
|
||||
if (r < 0)
|
||||
// conversion failed
|
||||
return {};
|
||||
|
||||
const size_t len = r;
|
||||
if (len < sizeof buf)
|
||||
// we fit in the buffer
|
||||
return { buf, len };
|
||||
|
||||
#if __cplusplus >= 201703L
|
||||
// C++17: Create a string and write to its underlying array
|
||||
std::string s(len, '\0');
|
||||
va_start(args, fmt);
|
||||
std::vsnprintf(s.data(), len + 1, fmt, args);
|
||||
va_end(args);
|
||||
|
||||
return s;
|
||||
#else
|
||||
// C++11 or C++14: We need to allocate scratch memory
|
||||
auto vbuf = std::unique_ptr<char[]>(new char[len + 1]);
|
||||
va_start(args, fmt);
|
||||
std::vsnprintf(vbuf.get(), len + 1, fmt, args);
|
||||
va_end(args);
|
||||
|
||||
return { vbuf.get(), len };
|
||||
#endif
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
class VadIterator
|
||||
{
|
||||
private:
|
||||
// OnnxRuntime resources
|
||||
Ort::Env env;
|
||||
Ort::SessionOptions session_options;
|
||||
@@ -16,47 +100,39 @@ class VadIterator
|
||||
Ort::AllocatorWithDefaultOptions allocator;
|
||||
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeCPU);
|
||||
|
||||
public:
|
||||
private:
|
||||
void init_engine_threads(int inter_threads, int intra_threads)
|
||||
{
|
||||
{
|
||||
// The method should be called in each thread/proc in multi-thread/proc work
|
||||
session_options.SetIntraOpNumThreads(intra_threads);
|
||||
session_options.SetInterOpNumThreads(inter_threads);
|
||||
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
|
||||
}
|
||||
};
|
||||
|
||||
void init_onnx_model(const std::string &model_path)
|
||||
{
|
||||
void init_onnx_model(const std::wstring& model_path)
|
||||
{
|
||||
// Init threads = 1 for
|
||||
init_engine_threads(1, 1);
|
||||
// Load model
|
||||
session = std::make_shared<Ort::Session>(env, model_path.c_str(), session_options);
|
||||
}
|
||||
};
|
||||
|
||||
void reset_states()
|
||||
{
|
||||
// Call reset before each audio start
|
||||
std::memset(_state.data(), 0.0f, _state.size() * sizeof(float));
|
||||
triggerd = false;
|
||||
triggered = false;
|
||||
temp_end = 0;
|
||||
current_sample = 0;
|
||||
}
|
||||
|
||||
// Call it in predict func. if you prefer raw bytes input.
|
||||
void bytes_to_float_tensor(const char *pcm_bytes)
|
||||
{
|
||||
std::memcpy(input.data(), pcm_bytes, window_size_samples * sizeof(int16_t));
|
||||
for (int i = 0; i < window_size_samples; i++)
|
||||
{
|
||||
input[i] = static_cast<float>(input[i]) / 32768; // int16_t normalized to float
|
||||
}
|
||||
}
|
||||
prev_end = next_start = 0;
|
||||
|
||||
speeches.clear();
|
||||
current_speech = timestamp_t();
|
||||
};
|
||||
|
||||
void predict(const std::vector<float> &data)
|
||||
{
|
||||
// bytes_to_float_tensor(data);
|
||||
|
||||
// Infer
|
||||
// Create ort tensors
|
||||
input.assign(data.begin(), data.end());
|
||||
@@ -80,81 +156,215 @@ public:
|
||||
output_node_names.data(), output_node_names.size());
|
||||
|
||||
// Output probability & update h,c recursively
|
||||
float output = ort_outputs[0].GetTensorMutableData<float>()[0];
|
||||
float speech_prob = ort_outputs[0].GetTensorMutableData<float>()[0];
|
||||
float *stateN = ort_outputs[1].GetTensorMutableData<float>();
|
||||
std::memcpy(_state.data(), stateN, size_state * sizeof(float));
|
||||
|
||||
// Push forward sample index
|
||||
current_sample += window_size_samples;
|
||||
|
||||
|
||||
// Reset temp_end when > threshold
|
||||
if ((output >= threshold) && (temp_end != 0))
|
||||
if ((speech_prob >= threshold))
|
||||
{
|
||||
temp_end = 0;
|
||||
}
|
||||
// 1) Silence
|
||||
if ((output < threshold) && (triggerd == false))
|
||||
{
|
||||
// printf("{ silence: %.3f s }\n", 1.0 * current_sample / sample_rate);
|
||||
}
|
||||
// 2) Speaking
|
||||
if ((output >= (threshold - 0.15)) && (triggerd == true))
|
||||
{
|
||||
// printf("{ speaking_2: %.3f s }\n", 1.0 * current_sample / sample_rate);
|
||||
#ifdef __DEBUG_SPEECH_PROB___
|
||||
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
|
||||
printf("{ start: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample- window_size_samples);
|
||||
#endif //__DEBUG_SPEECH_PROB___
|
||||
if (temp_end != 0)
|
||||
{
|
||||
temp_end = 0;
|
||||
if (next_start < prev_end)
|
||||
next_start = current_sample - window_size_samples;
|
||||
}
|
||||
if (triggered == false)
|
||||
{
|
||||
triggered = true;
|
||||
|
||||
current_speech.start = current_sample - window_size_samples;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// 3) Start
|
||||
if ((output >= threshold) && (triggerd == false))
|
||||
{
|
||||
triggerd = true;
|
||||
speech_start = current_sample - window_size_samples - speech_pad_samples; // minus window_size_samples to get precise start time point.
|
||||
printf("{ start: %.3f s }\n", 1.0 * speech_start / sample_rate);
|
||||
if (
|
||||
(triggered == true)
|
||||
&& ((current_sample - current_speech.start) > max_speech_samples)
|
||||
) {
|
||||
if (prev_end > 0) {
|
||||
current_speech.end = prev_end;
|
||||
speeches.push_back(current_speech);
|
||||
current_speech = timestamp_t();
|
||||
|
||||
// previously reached silence(< neg_thres) and is still not speech(< thres)
|
||||
if (next_start < prev_end)
|
||||
triggered = false;
|
||||
else{
|
||||
current_speech.start = next_start;
|
||||
}
|
||||
prev_end = 0;
|
||||
next_start = 0;
|
||||
temp_end = 0;
|
||||
|
||||
}
|
||||
else{
|
||||
current_speech.end = current_sample;
|
||||
speeches.push_back(current_speech);
|
||||
current_speech = timestamp_t();
|
||||
prev_end = 0;
|
||||
next_start = 0;
|
||||
temp_end = 0;
|
||||
triggered = false;
|
||||
}
|
||||
return;
|
||||
|
||||
}
|
||||
if ((speech_prob >= (threshold - 0.15)) && (speech_prob < threshold))
|
||||
{
|
||||
if (triggered) {
|
||||
#ifdef __DEBUG_SPEECH_PROB___
|
||||
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
|
||||
printf("{ speeking: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
|
||||
#endif //__DEBUG_SPEECH_PROB___
|
||||
}
|
||||
else {
|
||||
#ifdef __DEBUG_SPEECH_PROB___
|
||||
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
|
||||
printf("{ silence: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
|
||||
#endif //__DEBUG_SPEECH_PROB___
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
// 4) End
|
||||
if ((output < (threshold - 0.15)) && (triggerd == true))
|
||||
if ((speech_prob < (threshold - 0.15)))
|
||||
{
|
||||
#ifdef __DEBUG_SPEECH_PROB___
|
||||
float speech = current_sample - window_size_samples - speech_pad_samples; // minus window_size_samples to get precise start time point.
|
||||
printf("{ end: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
|
||||
#endif //__DEBUG_SPEECH_PROB___
|
||||
if (triggered == true)
|
||||
{
|
||||
if (temp_end == 0)
|
||||
{
|
||||
temp_end = current_sample;
|
||||
}
|
||||
if (current_sample - temp_end > min_silence_samples_at_max_speech)
|
||||
prev_end = temp_end;
|
||||
// a. silence < min_slience_samples, continue speaking
|
||||
if ((current_sample - temp_end) < min_silence_samples)
|
||||
{
|
||||
|
||||
if (temp_end == 0)
|
||||
{
|
||||
temp_end = current_sample;
|
||||
}
|
||||
// b. silence >= min_slience_samples, end speaking
|
||||
else
|
||||
{
|
||||
current_speech.end = temp_end;
|
||||
if (current_speech.end - current_speech.start > min_speech_samples)
|
||||
{
|
||||
speeches.push_back(current_speech);
|
||||
current_speech = timestamp_t();
|
||||
prev_end = 0;
|
||||
next_start = 0;
|
||||
temp_end = 0;
|
||||
triggered = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
// a. silence < min_slience_samples, continue speaking
|
||||
if ((current_sample - temp_end) < min_silence_samples)
|
||||
{
|
||||
// printf("{ speaking_4: %.3f s }\n", 1.0 * current_sample / sample_rate);
|
||||
// printf("");
|
||||
}
|
||||
// b. silence >= min_slience_samples, end speaking
|
||||
else
|
||||
{
|
||||
speech_end = temp_end ? temp_end + speech_pad_samples : current_sample + speech_pad_samples;
|
||||
temp_end = 0;
|
||||
triggerd = false;
|
||||
printf("{ end: %.3f s }\n", 1.0 * speech_end / sample_rate);
|
||||
else {
|
||||
// may first windows see end state.
|
||||
}
|
||||
return;
|
||||
}
|
||||
};
|
||||
public:
|
||||
void process(const std::vector<float>& input_wav)
|
||||
{
|
||||
reset_states();
|
||||
|
||||
audio_length_samples = input_wav.size();
|
||||
|
||||
for (int j = 0; j < audio_length_samples; j += window_size_samples)
|
||||
{
|
||||
if (j + window_size_samples > audio_length_samples)
|
||||
break;
|
||||
std::vector<float> r{ &input_wav[0] + j, &input_wav[0] + j + window_size_samples };
|
||||
predict(r);
|
||||
}
|
||||
|
||||
if (current_speech.start >= 0) {
|
||||
current_speech.end = audio_length_samples;
|
||||
speeches.push_back(current_speech);
|
||||
current_speech = timestamp_t();
|
||||
prev_end = 0;
|
||||
next_start = 0;
|
||||
temp_end = 0;
|
||||
triggered = false;
|
||||
}
|
||||
};
|
||||
|
||||
void process(const std::vector<float>& input_wav, std::vector<float>& output_wav)
|
||||
{
|
||||
process(input_wav);
|
||||
collect_chunks(input_wav, output_wav);
|
||||
}
|
||||
|
||||
void collect_chunks(const std::vector<float>& input_wav, std::vector<float>& output_wav)
|
||||
{
|
||||
output_wav.clear();
|
||||
for (int i = 0; i < speeches.size(); i++) {
|
||||
#ifdef __DEBUG_SPEECH_PROB___
|
||||
std::cout << speeches[i].c_str() << std::endl;
|
||||
#endif //#ifdef __DEBUG_SPEECH_PROB___
|
||||
std::vector<float> slice(&input_wav[speeches[i].start], &input_wav[speeches[i].end]);
|
||||
output_wav.insert(output_wav.end(),slice.begin(),slice.end());
|
||||
}
|
||||
};
|
||||
|
||||
const std::vector<timestamp_t> get_speech_timestamps() const
|
||||
{
|
||||
return speeches;
|
||||
}
|
||||
|
||||
void drop_chunks(const std::vector<float>& input_wav, std::vector<float>& output_wav)
|
||||
{
|
||||
output_wav.clear();
|
||||
int current_start = 0;
|
||||
for (int i = 0; i < speeches.size(); i++) {
|
||||
|
||||
std::vector<float> slice(&input_wav[current_start],&input_wav[speeches[i].start]);
|
||||
output_wav.insert(output_wav.end(), slice.begin(), slice.end());
|
||||
current_start = speeches[i].end;
|
||||
}
|
||||
|
||||
std::vector<float> slice(&input_wav[current_start], &input_wav[input_wav.size()]);
|
||||
output_wav.insert(output_wav.end(), slice.begin(), slice.end());
|
||||
};
|
||||
|
||||
private:
|
||||
// model config
|
||||
int64_t window_size_samples; // Assign when init, support 256 512 768 for 8k; 512 1024 1536 for 16k.
|
||||
int sample_rate;
|
||||
int sr_per_ms; // Assign when init, support 8 or 16
|
||||
float threshold;
|
||||
int sample_rate; //Assign when init support 16000 or 8000
|
||||
int sr_per_ms; // Assign when init, support 8 or 16
|
||||
float threshold;
|
||||
int min_silence_samples; // sr_per_ms * #ms
|
||||
int min_silence_samples_at_max_speech; // sr_per_ms * #98
|
||||
int min_speech_samples; // sr_per_ms * #ms
|
||||
float max_speech_samples;
|
||||
int speech_pad_samples; // usually a
|
||||
int audio_length_samples;
|
||||
|
||||
// model states
|
||||
bool triggerd = false;
|
||||
unsigned int speech_start = 0;
|
||||
unsigned int speech_end = 0;
|
||||
bool triggered = false;
|
||||
unsigned int temp_end = 0;
|
||||
unsigned int current_sample = 0;
|
||||
// MAX 4294967295 samples / 8sample per ms / 1000 / 60 = 8947 minutes
|
||||
float output;
|
||||
int prev_end;
|
||||
int next_start = 0;
|
||||
|
||||
//Output timestamp
|
||||
std::vector<timestamp_t> speeches;
|
||||
timestamp_t current_speech;
|
||||
|
||||
|
||||
// Onnx model
|
||||
// Inputs
|
||||
@@ -166,79 +376,103 @@ private:
|
||||
std::vector<float> _state;
|
||||
std::vector<int64_t> sr;
|
||||
|
||||
int64_t input_node_dims[2] = {};
|
||||
const int64_t state_node_dims[3] = {2, 1, 128};
|
||||
int64_t input_node_dims[2] = {};
|
||||
const int64_t state_node_dims[3] = {2, 1, 128};
|
||||
const int64_t sr_node_dims[1] = {1};
|
||||
|
||||
// Outputs
|
||||
std::vector<Ort::Value> ort_outputs;
|
||||
std::vector<const char *> output_node_names = {"output", "stateN"};
|
||||
|
||||
|
||||
public:
|
||||
// Construction
|
||||
VadIterator(const std::string ModelPath,
|
||||
int Sample_rate, int frame_size,
|
||||
float Threshold, int min_silence_duration_ms, int speech_pad_ms)
|
||||
VadIterator(const std::wstring ModelPath,
|
||||
int Sample_rate = 16000, int windows_frame_size = 32,
|
||||
float Threshold = 0.5, int min_silence_duration_ms = 0,
|
||||
int speech_pad_ms = 32, int min_speech_duration_ms = 32,
|
||||
float max_speech_duration_s = std::numeric_limits<float>::infinity())
|
||||
{
|
||||
init_onnx_model(ModelPath);
|
||||
threshold = Threshold;
|
||||
sample_rate = Sample_rate;
|
||||
sr_per_ms = sample_rate / 1000;
|
||||
threshold = Threshold;
|
||||
min_silence_samples = sr_per_ms * min_silence_duration_ms;
|
||||
|
||||
window_size_samples = windows_frame_size * sr_per_ms;
|
||||
|
||||
min_speech_samples = sr_per_ms * min_speech_duration_ms;
|
||||
speech_pad_samples = sr_per_ms * speech_pad_ms;
|
||||
window_size_samples = frame_size * sr_per_ms;
|
||||
|
||||
|
||||
max_speech_samples = (
|
||||
sample_rate * max_speech_duration_s
|
||||
- window_size_samples
|
||||
- 2 * speech_pad_samples
|
||||
);
|
||||
|
||||
min_silence_samples = sr_per_ms * min_silence_duration_ms;
|
||||
min_silence_samples_at_max_speech = sr_per_ms * 98;
|
||||
|
||||
input.resize(window_size_samples);
|
||||
input_node_dims[0] = 1;
|
||||
input_node_dims[1] = window_size_samples;
|
||||
|
||||
_state.resize(size_state);
|
||||
sr.resize(1);
|
||||
sr[0] = sample_rate;
|
||||
}
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
int main()
|
||||
{
|
||||
std::vector<timestamp_t> stamps;
|
||||
|
||||
// Read wav
|
||||
wav::WavReader wav_reader("./recorder.wav");
|
||||
std::vector<int16_t> data(wav_reader.num_samples());
|
||||
wav::WavReader wav_reader("recorder.wav"); //16000,1,32float
|
||||
std::vector<float> input_wav(wav_reader.num_samples());
|
||||
std::vector<float> output_wav;
|
||||
|
||||
for (int i = 0; i < wav_reader.num_samples(); i++)
|
||||
{
|
||||
data[i] = static_cast<int16_t>(*(wav_reader.data() + i));
|
||||
input_wav[i] = static_cast<float>(*(wav_reader.data() + i));
|
||||
}
|
||||
|
||||
for (int i = 0; i < wav_reader.num_samples(); i++)
|
||||
{
|
||||
input_wav[i] = static_cast<float>(data[i]) / 32768;
|
||||
}
|
||||
|
||||
|
||||
// ===== Test configs =====
|
||||
std::string path = "../../files/silero_vad.onnx";
|
||||
int test_sr = 16000;
|
||||
int test_frame_ms = 32;
|
||||
float test_threshold = 0.5f;
|
||||
int test_min_silence_duration_ms = 0;
|
||||
int test_speech_pad_ms = 0;
|
||||
int test_window_samples = test_frame_ms * (test_sr/1000);
|
||||
std::wstring path = L"silero_vad.onnx";
|
||||
VadIterator vad(path);
|
||||
|
||||
VadIterator vad(
|
||||
path, test_sr, test_frame_ms, test_threshold,
|
||||
test_min_silence_duration_ms, test_speech_pad_ms);
|
||||
// ==============================================
|
||||
// ==== = Example 1 of full function =====
|
||||
// ==============================================
|
||||
vad.process(input_wav);
|
||||
|
||||
for (int j = 0; j < wav_reader.num_samples(); j += test_window_samples)
|
||||
{
|
||||
std::vector<float> r{&input_wav[0] + j, &input_wav[0] + j + test_window_samples};
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
// Predict and print throughout process time
|
||||
vad.predict(r);
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
auto elapsed_time = std::chrono::duration_cast<std::chrono::nanoseconds>(end-start);
|
||||
std::cout << "== Elapsed time: " << 1.0*elapsed_time.count()/1000000 << "ms" << " ==" <<std::endl;
|
||||
// 1.a get_speech_timestamps
|
||||
stamps = vad.get_speech_timestamps();
|
||||
for (int i = 0; i < stamps.size(); i++) {
|
||||
|
||||
std::cout << stamps[i].c_str() << std::endl;
|
||||
}
|
||||
|
||||
// 1.b collect_chunks output wav
|
||||
vad.collect_chunks(input_wav, output_wav);
|
||||
|
||||
// 1.c drop_chunks output wav
|
||||
vad.drop_chunks(input_wav, output_wav);
|
||||
|
||||
// ==============================================
|
||||
// ===== Example 2 of simple full function =====
|
||||
// ==============================================
|
||||
vad.process(input_wav, output_wav);
|
||||
|
||||
stamps = vad.get_speech_timestamps();
|
||||
for (int i = 0; i < stamps.size(); i++) {
|
||||
|
||||
std::cout << stamps[i].c_str() << std::endl;
|
||||
}
|
||||
|
||||
// ==============================================
|
||||
// ===== Example 3 of full function =====
|
||||
// ==============================================
|
||||
for(int i = 0; i<2; i++)
|
||||
vad.process(input_wav, output_wav);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user