mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-05 09:59:20 +08:00
delete onnx from utils
This commit is contained in:
58
utils.py
58
utils.py
@@ -1,15 +1,16 @@
|
||||
import torch
|
||||
import torchaudio
|
||||
import onnxruntime
|
||||
import numpy as np
|
||||
from typing import List
|
||||
from itertools import repeat
|
||||
from collections import deque
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
torchaudio.set_audio_backend("soundfile") # switch backend
|
||||
|
||||
def validate(model, inputs):
|
||||
with torch.no_grad():
|
||||
outs = model(inputs)
|
||||
return outs
|
||||
|
||||
def read_audio(path: str,
|
||||
target_sr: int = 16000):
|
||||
@@ -43,14 +44,9 @@ def init_jit_model(model_path: str,
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
def init_onnx_model(model_path: str):
|
||||
return onnxruntime.InferenceSession(model_path)
|
||||
|
||||
|
||||
def get_speech_ts(wav, model,
|
||||
trig_sum=0.25, neg_trig_sum=0.01,
|
||||
num_steps=8, batch_size=200):
|
||||
trig_sum=0.25, neg_trig_sum=0.02,
|
||||
num_steps=8, batch_size=200, run_function=validate):
|
||||
|
||||
num_samples = 4000
|
||||
assert num_samples % num_steps == 0
|
||||
@@ -62,16 +58,16 @@ def get_speech_ts(wav, model,
|
||||
chunk = wav[i: i+num_samples]
|
||||
if len(chunk) < num_samples:
|
||||
chunk = F.pad(chunk, (0, num_samples - len(chunk)))
|
||||
to_concat.append(chunk)
|
||||
to_concat.append(chunk.unsqueeze(0))
|
||||
if len(to_concat) >= batch_size:
|
||||
chunks = torch.Tensor(torch.vstack(to_concat))
|
||||
out = validate(model, chunks)[-2]
|
||||
chunks = torch.Tensor(torch.cat(to_concat, dim=0))
|
||||
out = run_function(model, chunks)[-2]
|
||||
outs.append(out)
|
||||
to_concat = []
|
||||
|
||||
if to_concat:
|
||||
chunks = torch.Tensor(torch.vstack(to_concat))
|
||||
out = validate(model, chunks)[-2]
|
||||
chunks = torch.Tensor(torch.cat(to_concat, dim=0))
|
||||
out = run_function(model, chunks)[-2]
|
||||
outs.append(out)
|
||||
|
||||
outs = torch.cat(outs, dim=0)
|
||||
@@ -101,7 +97,7 @@ def get_speech_ts(wav, model,
|
||||
|
||||
class VADiterator:
|
||||
def __init__(self,
|
||||
trig_sum=0.26, neg_trig_sum=0.01,
|
||||
trig_sum=0.26, neg_trig_sum=0.02,
|
||||
num_steps=8):
|
||||
self.num_samples = 4000
|
||||
self.num_steps = num_steps
|
||||
@@ -133,11 +129,11 @@ class VADiterator:
|
||||
wav_chunk = F.pad(wav_chunk, (0, self.num_samples - len(wav_chunk))) # assume that short chunk means end of audio
|
||||
self.last = True
|
||||
|
||||
stacked = torch.hstack([self.prev, wav_chunk])
|
||||
stacked = torch.cat([self.prev, wav_chunk])
|
||||
self.prev = wav_chunk
|
||||
|
||||
overlap_chunks = [stacked[i:i+self.num_samples] for i in range(self.step, self.num_samples+1, self.step)] # 500 step is good enough
|
||||
return torch.vstack(overlap_chunks)
|
||||
overlap_chunks = [stacked[i:i+self.num_samples].unsqueeze(0) for i in range(self.step, self.num_samples+1, self.step)] # 500 step is good enough
|
||||
return torch.cat(overlap_chunks, dim=0)
|
||||
|
||||
def state(self, model_out):
|
||||
current_speech = {}
|
||||
@@ -159,14 +155,14 @@ class VADiterator:
|
||||
|
||||
def state_generator(model, audios,
|
||||
onnx=False,
|
||||
trig_sum=0.26, neg_trig_sum=0.01,
|
||||
num_steps=8, audios_in_stream=5):
|
||||
trig_sum=0.26, neg_trig_sum=0.02,
|
||||
num_steps=8, audios_in_stream=5, run_function=validate):
|
||||
VADiters = [VADiterator(trig_sum, neg_trig_sum, num_steps) for i in range(audios_in_stream)]
|
||||
for i, current_pieces in enumerate(stream_imitator(audios, audios_in_stream)):
|
||||
for_batch = [x.prepare_batch(*y) for x, y in zip(VADiters, current_pieces)]
|
||||
batch = torch.cat(for_batch)
|
||||
|
||||
outs = validate(model, batch)
|
||||
outs = run_function(model, batch)
|
||||
vad_outs = np.split(outs[-2].numpy(), audios_in_stream)
|
||||
|
||||
states = []
|
||||
@@ -212,7 +208,7 @@ def stream_imitator(audios, audios_in_stream):
|
||||
|
||||
|
||||
def single_audio_stream(model, audio, onnx=False, trig_sum=0.26,
|
||||
neg_trig_sum=0.01, num_steps=8):
|
||||
neg_trig_sum=0.02, num_steps=8, run_function=validate):
|
||||
num_samples = 4000
|
||||
VADiter = VADiterator(trig_sum, neg_trig_sum, num_steps)
|
||||
wav = read_audio(audio)
|
||||
@@ -220,7 +216,7 @@ def single_audio_stream(model, audio, onnx=False, trig_sum=0.26,
|
||||
for chunk in wav_chunks:
|
||||
batch = VADiter.prepare_batch(chunk)
|
||||
|
||||
outs = validate(model, batch)
|
||||
outs = run_function(model, batch)
|
||||
vad_outs = outs[-2] # this is very misleading
|
||||
|
||||
states = []
|
||||
@@ -228,17 +224,3 @@ def single_audio_stream(model, audio, onnx=False, trig_sum=0.26,
|
||||
if state[0]:
|
||||
states.append(state[0])
|
||||
yield states
|
||||
|
||||
|
||||
def validate(model, inputs):
|
||||
onnx = False
|
||||
if type(model) == onnxruntime.capi.session.InferenceSession:
|
||||
onnx = True
|
||||
with torch.no_grad():
|
||||
if onnx:
|
||||
ort_inputs = {'input': inputs.cpu().numpy()}
|
||||
outs = model.run(None, ort_inputs)
|
||||
outs = [torch.Tensor(x) for x in outs]
|
||||
else:
|
||||
outs = model(inputs)
|
||||
return outs
|
||||
|
||||
Reference in New Issue
Block a user