mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-04 17:39:22 +08:00
add java onnx example
This commit is contained in:
@@ -0,0 +1,180 @@
|
||||
package org.example;
|
||||
|
||||
import ai.onnxruntime.OnnxTensor;
|
||||
import ai.onnxruntime.OrtEnvironment;
|
||||
import ai.onnxruntime.OrtException;
|
||||
import ai.onnxruntime.OrtSession;
|
||||
import java.util.Arrays;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
public class SlieroVadOnnxModel {
|
||||
// Define private variable OrtSession
|
||||
private final OrtSession session;
|
||||
private float[][][] h;
|
||||
private float[][][] c;
|
||||
// Define the last sample rate
|
||||
private int lastSr = 0;
|
||||
// Define the last batch size
|
||||
private int lastBatchSize = 0;
|
||||
// Define a list of supported sample rates
|
||||
private static final List<Integer> SAMPLE_RATES = Arrays.asList(8000, 16000);
|
||||
|
||||
// Constructor
|
||||
public SlieroVadOnnxModel(String modelPath) throws OrtException {
|
||||
// Get the ONNX runtime environment
|
||||
OrtEnvironment env = OrtEnvironment.getEnvironment();
|
||||
// Create an ONNX session options object
|
||||
OrtSession.SessionOptions opts = new OrtSession.SessionOptions();
|
||||
// Set the InterOp thread count to 1, InterOp threads are used for parallel processing of different computation graph operations
|
||||
opts.setInterOpNumThreads(1);
|
||||
// Set the IntraOp thread count to 1, IntraOp threads are used for parallel processing within a single operation
|
||||
opts.setIntraOpNumThreads(1);
|
||||
// Add a CPU device, setting to false disables CPU execution optimization
|
||||
opts.addCPU(true);
|
||||
// Create an ONNX session using the environment, model path, and options
|
||||
session = env.createSession(modelPath, opts);
|
||||
// Reset states
|
||||
resetStates();
|
||||
}
|
||||
|
||||
/**
|
||||
* Reset states
|
||||
*/
|
||||
void resetStates() {
|
||||
h = new float[2][1][64];
|
||||
c = new float[2][1][64];
|
||||
lastSr = 0;
|
||||
lastBatchSize = 0;
|
||||
}
|
||||
|
||||
public void close() throws OrtException {
|
||||
session.close();
|
||||
}
|
||||
|
||||
/**
|
||||
* Define inner class ValidationResult
|
||||
*/
|
||||
public static class ValidationResult {
|
||||
public final float[][] x;
|
||||
public final int sr;
|
||||
|
||||
// Constructor
|
||||
public ValidationResult(float[][] x, int sr) {
|
||||
this.x = x;
|
||||
this.sr = sr;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Function to validate input data
|
||||
*/
|
||||
private ValidationResult validateInput(float[][] x, int sr) {
|
||||
// Process the input data with dimension 1
|
||||
if (x.length == 1) {
|
||||
x = new float[][]{x[0]};
|
||||
}
|
||||
// Throw an exception when the input data dimension is greater than 2
|
||||
if (x.length > 2) {
|
||||
throw new IllegalArgumentException("Incorrect audio data dimension: " + x[0].length);
|
||||
}
|
||||
|
||||
// Process the input data when the sample rate is not equal to 16000 and is a multiple of 16000
|
||||
if (sr != 16000 && (sr % 16000 == 0)) {
|
||||
int step = sr / 16000;
|
||||
float[][] reducedX = new float[x.length][];
|
||||
|
||||
for (int i = 0; i < x.length; i++) {
|
||||
float[] current = x[i];
|
||||
float[] newArr = new float[(current.length + step - 1) / step];
|
||||
|
||||
for (int j = 0, index = 0; j < current.length; j += step, index++) {
|
||||
newArr[index] = current[j];
|
||||
}
|
||||
|
||||
reducedX[i] = newArr;
|
||||
}
|
||||
|
||||
x = reducedX;
|
||||
sr = 16000;
|
||||
}
|
||||
|
||||
// If the sample rate is not in the list of supported sample rates, throw an exception
|
||||
if (!SAMPLE_RATES.contains(sr)) {
|
||||
throw new IllegalArgumentException("Only supports sample rates " + SAMPLE_RATES + " (or multiples of 16000)");
|
||||
}
|
||||
|
||||
// If the input audio block is too short, throw an exception
|
||||
if (((float) sr) / x[0].length > 31.25) {
|
||||
throw new IllegalArgumentException("Input audio is too short");
|
||||
}
|
||||
|
||||
// Return the validated result
|
||||
return new ValidationResult(x, sr);
|
||||
}
|
||||
|
||||
/**
|
||||
* Method to call the ONNX model
|
||||
*/
|
||||
public float[] call(float[][] x, int sr) throws OrtException {
|
||||
ValidationResult result = validateInput(x, sr);
|
||||
x = result.x;
|
||||
sr = result.sr;
|
||||
|
||||
int batchSize = x.length;
|
||||
|
||||
if (lastBatchSize == 0 || lastSr != sr || lastBatchSize != batchSize) {
|
||||
resetStates();
|
||||
}
|
||||
|
||||
OrtEnvironment env = OrtEnvironment.getEnvironment();
|
||||
|
||||
OnnxTensor inputTensor = null;
|
||||
OnnxTensor hTensor = null;
|
||||
OnnxTensor cTensor = null;
|
||||
OnnxTensor srTensor = null;
|
||||
OrtSession.Result ortOutputs = null;
|
||||
|
||||
try {
|
||||
// Create input tensors
|
||||
inputTensor = OnnxTensor.createTensor(env, x);
|
||||
hTensor = OnnxTensor.createTensor(env, h);
|
||||
cTensor = OnnxTensor.createTensor(env, c);
|
||||
srTensor = OnnxTensor.createTensor(env, new long[]{sr});
|
||||
|
||||
Map<String, OnnxTensor> inputs = new HashMap<>();
|
||||
inputs.put("input", inputTensor);
|
||||
inputs.put("sr", srTensor);
|
||||
inputs.put("h", hTensor);
|
||||
inputs.put("c", cTensor);
|
||||
|
||||
// Call the ONNX model for calculation
|
||||
ortOutputs = session.run(inputs);
|
||||
// Get the output results
|
||||
float[][] output = (float[][]) ortOutputs.get(0).getValue();
|
||||
h = (float[][][]) ortOutputs.get(1).getValue();
|
||||
c = (float[][][]) ortOutputs.get(2).getValue();
|
||||
|
||||
lastSr = sr;
|
||||
lastBatchSize = batchSize;
|
||||
return output[0];
|
||||
} finally {
|
||||
if (inputTensor != null) {
|
||||
inputTensor.close();
|
||||
}
|
||||
if (hTensor != null) {
|
||||
hTensor.close();
|
||||
}
|
||||
if (cTensor != null) {
|
||||
cTensor.close();
|
||||
}
|
||||
if (srTensor != null) {
|
||||
srTensor.close();
|
||||
}
|
||||
if (ortOutputs != null) {
|
||||
ortOutputs.close();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user