Files
lite-avatar/funasr_local/utils/wav_utils.py
2025-02-20 12:17:03 +08:00

322 lines
12 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import math
import os
import shutil
from multiprocessing import Pool
from typing import Any, Dict, Union
# import kaldiio
import librosa
import numpy as np
import torch
import torchaudio
import torchaudio.compliance.kaldi as kaldi
def ndarray_resample(audio_in: np.ndarray,
fs_in: int = 16000,
fs_out: int = 16000) -> np.ndarray:
audio_out = audio_in
if fs_in != fs_out:
audio_out = librosa.resample(audio_in, orig_sr=fs_in, target_sr=fs_out)
return audio_out
def torch_resample(audio_in: torch.Tensor,
fs_in: int = 16000,
fs_out: int = 16000) -> torch.Tensor:
audio_out = audio_in
if fs_in != fs_out:
audio_out = torchaudio.transforms.Resample(orig_freq=fs_in,
new_freq=fs_out)(audio_in)
return audio_out
def extract_CMVN_featrures(mvn_file):
"""
extract CMVN from cmvn.ark
"""
if not os.path.exists(mvn_file):
return None
try:
cmvn = kaldiio.load_mat(mvn_file)
means = []
variance = []
for i in range(cmvn.shape[1] - 1):
means.append(float(cmvn[0][i]))
count = float(cmvn[0][-1])
for i in range(cmvn.shape[1] - 1):
variance.append(float(cmvn[1][i]))
for i in range(len(means)):
means[i] /= count
variance[i] = variance[i] / count - means[i] * means[i]
if variance[i] < 1.0e-20:
variance[i] = 1.0e-20
variance[i] = 1.0 / math.sqrt(variance[i])
cmvn = np.array([means, variance])
return cmvn
except Exception:
cmvn = extract_CMVN_features_txt(mvn_file)
return cmvn
def extract_CMVN_features_txt(mvn_file): # noqa
with open(mvn_file, 'r', encoding='utf-8') as f:
lines = f.readlines()
add_shift_list = []
rescale_list = []
for i in range(len(lines)):
line_item = lines[i].split()
if line_item[0] == '<AddShift>':
line_item = lines[i + 1].split()
if line_item[0] == '<LearnRateCoef>':
add_shift_line = line_item[3:(len(line_item) - 1)]
add_shift_list = list(add_shift_line)
continue
elif line_item[0] == '<Rescale>':
line_item = lines[i + 1].split()
if line_item[0] == '<LearnRateCoef>':
rescale_line = line_item[3:(len(line_item) - 1)]
rescale_list = list(rescale_line)
continue
add_shift_list_f = [float(s) for s in add_shift_list]
rescale_list_f = [float(s) for s in rescale_list]
cmvn = np.array([add_shift_list_f, rescale_list_f])
return cmvn
def build_LFR_features(inputs, m=7, n=6): # noqa
"""
Actually, this implements stacking frames and skipping frames.
if m = 1 and n = 1, just return the origin features.
if m = 1 and n > 1, it works like skipping.
if m > 1 and n = 1, it works like stacking but only support right frames.
if m > 1 and n > 1, it works like LFR.
Args:
inputs_batch: inputs is T x D np.ndarray
m: number of frames to stack
n: number of frames to skip
"""
# LFR_inputs_batch = []
# for inputs in inputs_batch:
LFR_inputs = []
T = inputs.shape[0]
T_lfr = int(np.ceil(T / n))
left_padding = np.tile(inputs[0], ((m - 1) // 2, 1))
inputs = np.vstack((left_padding, inputs))
T = T + (m - 1) // 2
for i in range(T_lfr):
if m <= T - i * n:
LFR_inputs.append(np.hstack(inputs[i * n:i * n + m]))
else: # process last LFR frame
num_padding = m - (T - i * n)
frame = np.hstack(inputs[i * n:])
for _ in range(num_padding):
frame = np.hstack((frame, inputs[-1]))
LFR_inputs.append(frame)
return np.vstack(LFR_inputs)
def compute_fbank(wav_file,
num_mel_bins=80,
frame_length=25,
frame_shift=10,
dither=0.0,
is_pcm=False,
fs: Union[int, Dict[Any, int]] = 16000):
audio_sr: int = 16000
model_sr: int = 16000
if isinstance(fs, int):
model_sr = fs
audio_sr = fs
else:
model_sr = fs['model_fs']
audio_sr = fs['audio_fs']
if is_pcm is True:
# byte(PCM16) to float32, and resample
value = wav_file
middle_data = np.frombuffer(value, dtype=np.int16)
middle_data = np.asarray(middle_data)
if middle_data.dtype.kind not in 'iu':
raise TypeError("'middle_data' must be an array of integers")
dtype = np.dtype('float32')
if dtype.kind != 'f':
raise TypeError("'dtype' must be a floating point type")
i = np.iinfo(middle_data.dtype)
abs_max = 2 ** (i.bits - 1)
offset = i.min + abs_max
waveform = np.frombuffer(
(middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32)
waveform = ndarray_resample(waveform, audio_sr, model_sr)
waveform = torch.from_numpy(waveform.reshape(1, -1))
else:
# load pcm from wav, and resample
waveform, audio_sr = torchaudio.load(wav_file)
waveform = waveform * (1 << 15)
waveform = torch_resample(waveform, audio_sr, model_sr)
mat = kaldi.fbank(waveform,
num_mel_bins=num_mel_bins,
frame_length=frame_length,
frame_shift=frame_shift,
dither=dither,
energy_floor=0.0,
window_type='hamming',
sample_frequency=model_sr)
input_feats = mat
return input_feats
def wav2num_frame(wav_path, frontend_conf):
waveform, sampling_rate = torchaudio.load(wav_path)
speech_length = (waveform.shape[1] / sampling_rate) * 1000.
n_frames = (waveform.shape[1] * 1000.0) / (sampling_rate * frontend_conf["frame_shift"] * frontend_conf["lfr_n"])
feature_dim = frontend_conf["n_mels"] * frontend_conf["lfr_m"]
return n_frames, feature_dim, speech_length
def calc_shape_core(root_path, frontend_conf, speech_length_min, speech_length_max, idx):
wav_scp_file = os.path.join(root_path, "wav.scp.{}".format(idx))
shape_file = os.path.join(root_path, "speech_shape.{}".format(idx))
with open(wav_scp_file) as f:
lines = f.readlines()
with open(shape_file, "w") as f:
for line in lines:
sample_name, wav_path = line.strip().split()
n_frames, feature_dim, speech_length = wav2num_frame(wav_path, frontend_conf)
write_flag = True
if speech_length_min > 0 and speech_length < speech_length_min:
write_flag = False
if speech_length_max > 0 and speech_length > speech_length_max:
write_flag = False
if write_flag:
f.write("{} {},{}\n".format(sample_name, str(int(np.ceil(n_frames))), str(int(feature_dim))))
f.flush()
def calc_shape(data_dir, dataset, frontend_conf, speech_length_min=-1, speech_length_max=-1, nj=32):
shape_path = os.path.join(data_dir, dataset, "shape_files")
if os.path.exists(shape_path):
assert os.path.exists(os.path.join(data_dir, dataset, "speech_shape"))
print('Shape file for small dataset already exists.')
return
os.makedirs(shape_path, exist_ok=True)
# split
wav_scp_file = os.path.join(data_dir, dataset, "wav.scp")
with open(wav_scp_file) as f:
lines = f.readlines()
num_lines = len(lines)
num_job_lines = num_lines // nj
start = 0
for i in range(nj):
end = start + num_job_lines
file = os.path.join(shape_path, "wav.scp.{}".format(str(i + 1)))
with open(file, "w") as f:
if i == nj - 1:
f.writelines(lines[start:])
else:
f.writelines(lines[start:end])
start = end
p = Pool(nj)
for i in range(nj):
p.apply_async(calc_shape_core,
args=(shape_path, frontend_conf, speech_length_min, speech_length_max, str(i + 1)))
print('Generating shape files, please wait a few minutes...')
p.close()
p.join()
# combine
file = os.path.join(data_dir, dataset, "speech_shape")
with open(file, "w") as f:
for i in range(nj):
job_file = os.path.join(shape_path, "speech_shape.{}".format(str(i + 1)))
with open(job_file) as job_f:
lines = job_f.readlines()
f.writelines(lines)
print('Generating shape files done.')
def generate_data_list(data_dir, dataset, nj=100):
split_dir = os.path.join(data_dir, dataset, "split")
if os.path.exists(split_dir):
assert os.path.exists(os.path.join(data_dir, dataset, "data.list"))
print('Data list for large dataset already exists.')
return
os.makedirs(split_dir, exist_ok=True)
with open(os.path.join(data_dir, dataset, "wav.scp")) as f_wav:
wav_lines = f_wav.readlines()
with open(os.path.join(data_dir, dataset, "text")) as f_text:
text_lines = f_text.readlines()
total_num_lines = len(wav_lines)
num_lines = total_num_lines // nj
start_num = 0
for i in range(nj):
end_num = start_num + num_lines
split_dir_nj = os.path.join(split_dir, str(i + 1))
os.mkdir(split_dir_nj)
wav_file = os.path.join(split_dir_nj, 'wav.scp')
text_file = os.path.join(split_dir_nj, "text")
with open(wav_file, "w") as fw, open(text_file, "w") as ft:
if i == nj - 1:
fw.writelines(wav_lines[start_num:])
ft.writelines(text_lines[start_num:])
else:
fw.writelines(wav_lines[start_num:end_num])
ft.writelines(text_lines[start_num:end_num])
start_num = end_num
data_list_file = os.path.join(data_dir, dataset, "data.list")
with open(data_list_file, "w") as f_data:
for i in range(nj):
wav_path = os.path.join(split_dir, str(i + 1), "wav.scp")
text_path = os.path.join(split_dir, str(i + 1), "text")
f_data.write(wav_path + " " + text_path + "\n")
def filter_wav_text(data_dir, dataset):
wav_file = os.path.join(data_dir,dataset,"wav.scp")
text_file = os.path.join(data_dir, dataset, "text")
with open(wav_file) as f_wav, open(text_file) as f_text:
wav_lines = f_wav.readlines()
text_lines = f_text.readlines()
os.rename(wav_file, "{}.bak".format(wav_file))
os.rename(text_file, "{}.bak".format(text_file))
wav_dict = {}
for line in wav_lines:
parts = line.strip().split()
if len(parts) != 2:
continue
sample_name, wav_path = parts
wav_dict[sample_name] = wav_path
text_dict = {}
for line in text_lines:
parts = line.strip().split()
if len(parts) < 2:
continue
sample_name = parts[0]
text_dict[sample_name] = " ".join(parts[1:]).lower()
filter_count = 0
with open(wav_file, "w") as f_wav, open(text_file, "w") as f_text:
for sample_name, wav_path in wav_dict.items():
if sample_name in text_dict.keys():
f_wav.write(sample_name + " " + wav_path + "\n")
f_text.write(sample_name + " " + text_dict[sample_name] + "\n")
else:
filter_count += 1
print("{}/{} samples in {} are filtered because of the mismatch between wav.scp and text".format(len(wav_lines), filter_count, dataset))