mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 01:49:19 +08:00
68 lines
2.7 KiB
Python
68 lines
2.7 KiB
Python
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from itertools import permutations
|
|
from torch import nn
|
|
|
|
|
|
def standard_loss(ys, ts, label_delay=0):
|
|
losses = [F.binary_cross_entropy(torch.sigmoid(y), t) * len(y) for y, t in zip(ys, ts)]
|
|
loss = torch.sum(torch.stack(losses))
|
|
n_frames = torch.from_numpy(np.array(np.sum([t.shape[0] for t in ts]))).to(torch.float32).to(ys[0].device)
|
|
loss = loss / n_frames
|
|
return loss
|
|
|
|
|
|
def batch_pit_n_speaker_loss(ys, ts, n_speakers_list):
|
|
max_n_speakers = ts[0].shape[1]
|
|
olens = [y.shape[0] for y in ys]
|
|
ys = nn.utils.rnn.pad_sequence(ys, batch_first=True, padding_value=-1)
|
|
ys_mask = [torch.ones(olen).to(ys.device) for olen in olens]
|
|
ys_mask = torch.nn.utils.rnn.pad_sequence(ys_mask, batch_first=True, padding_value=0).unsqueeze(-1)
|
|
|
|
losses = []
|
|
for shift in range(max_n_speakers):
|
|
ts_roll = [torch.roll(t, -shift, dims=1) for t in ts]
|
|
ts_roll = nn.utils.rnn.pad_sequence(ts_roll, batch_first=True, padding_value=-1)
|
|
loss = F.binary_cross_entropy(torch.sigmoid(ys), ts_roll, reduction='none')
|
|
if ys_mask is not None:
|
|
loss = loss * ys_mask
|
|
loss = torch.sum(loss, dim=1)
|
|
losses.append(loss)
|
|
losses = torch.stack(losses, dim=2)
|
|
|
|
perms = np.array(list(permutations(range(max_n_speakers)))).astype(np.float32)
|
|
perms = torch.from_numpy(perms).to(losses.device)
|
|
y_ind = torch.arange(max_n_speakers, dtype=torch.float32, device=losses.device)
|
|
t_inds = torch.fmod(perms - y_ind, max_n_speakers).to(torch.long)
|
|
|
|
losses_perm = []
|
|
for t_ind in t_inds:
|
|
losses_perm.append(
|
|
torch.mean(losses[:, y_ind.to(torch.long), t_ind], dim=1))
|
|
losses_perm = torch.stack(losses_perm, dim=1)
|
|
|
|
def select_perm_indices(num, max_num):
|
|
perms = list(permutations(range(max_num)))
|
|
sub_perms = list(permutations(range(num)))
|
|
return [
|
|
[x[:num] for x in perms].index(perm)
|
|
for perm in sub_perms]
|
|
|
|
masks = torch.full_like(losses_perm, device=losses.device, fill_value=float('inf'))
|
|
for i, t in enumerate(ts):
|
|
n_speakers = n_speakers_list[i]
|
|
indices = select_perm_indices(n_speakers, max_n_speakers)
|
|
masks[i, indices] = 0
|
|
losses_perm += masks
|
|
|
|
min_loss = torch.sum(torch.min(losses_perm, dim=1)[0])
|
|
n_frames = torch.from_numpy(np.array(np.sum([t.shape[0] for t in ts]))).to(losses.device)
|
|
min_loss = min_loss / n_frames
|
|
|
|
min_indices = torch.argmin(losses_perm, dim=1)
|
|
labels_perm = [t[:, perms[idx].to(torch.long)] for t, idx in zip(ts, min_indices)]
|
|
labels_perm = [t[:, :n_speakers] for t, n_speakers in zip(labels_perm, n_speakers_list)]
|
|
|
|
return min_loss, labels_perm
|