# Service with grpc-python We can send streaming audio data to server in real-time with grpc client every 10 ms e.g., and get transcribed text when stop speaking. The audio data is in streaming, the asr inference process is in offline. ## For the Server ### Prepare server environment #### Backend is modelscope pipeline (default) Install the modelscope and funasr ```shell pip install -U modelscope funasr # For the users in China, you could install with the command: # pip install -U modelscope funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple git clone https://github.com/alibaba/FunASR.git && cd FunASR ``` Install the requirements ```shell cd funasr/runtime/python/grpc pip install -r requirements_server.txt ``` #### Backend is funasr_onnx (optional) Install [`funasr_onnx`](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/runtime/python/onnxruntime). ``` pip install funasr_onnx -i https://pypi.Python.org/simple ``` Export the model, more details ref to [export docs](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/runtime/python/onnxruntime). ```shell python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize True ``` ### Generate protobuf file Run on server, the two generated pb files are both used for server and client ```shell # paraformer_pb2.py and paraformer_pb2_grpc.py are already generated, # regenerate it only when you make changes to ./proto/paraformer.proto file. python -m grpc_tools.protoc --proto_path=./proto -I ./proto --python_out=. --grpc_python_out=./ ./proto/paraformer.proto ``` ### Start grpc server ``` # Start server. python grpc_main_server.py --port 10095 --backend pipeline ``` If you want run server with onnxruntime, please set `backend` and `onnx_dir`. ``` # Start server. python grpc_main_server.py --port 10095 --backend onnxruntime --onnx_dir /models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch ``` ## For the client ### Install the requirements ```shell git clone https://github.com/alibaba/FunASR.git && cd FunASR cd funasr/runtime/python/grpc pip install -r requirements_client.txt ``` ### Generate protobuf file Run on server, the two generated pb files are both used for server and client ```shell # paraformer_pb2.py and paraformer_pb2_grpc.py are already generated, # regenerate it only when you make changes to ./proto/paraformer.proto file. python -m grpc_tools.protoc --proto_path=./proto -I ./proto --python_out=. --grpc_python_out=./ ./proto/paraformer.proto ``` ### Start grpc client ``` # Start client. python grpc_main_client_mic.py --host 127.0.0.1 --port 10095 ``` ## Workflow in desgin
## Reference
We borrow from or refer to some code as:
1)https://github.com/wenet-e2e/wenet/tree/main/runtime/core/grpc
2)https://github.com/Open-Speech-EkStep/inference_service/blob/main/realtime_inference_service.py