import argparse import logging from typing import Callable from typing import Collection from typing import Dict from typing import List from typing import Optional from typing import Tuple import os from pathlib import Path from typing import Tuple from typing import Union import yaml import numpy as np import torch from typeguard import check_argument_types from typeguard import check_return_type from funasr_local.datasets.collate_fn import CommonCollateFn from funasr_local.datasets.preprocessor import CommonPreprocessor from funasr_local.models.ctc import CTC from funasr_local.models.decoder.abs_decoder import AbsDecoder from funasr_local.models.decoder.rnn_decoder import RNNDecoder from funasr_local.models.decoder.transformer_decoder import ( DynamicConvolution2DTransformerDecoder, # noqa: H301 ) from funasr_local.models.decoder.transformer_decoder import DynamicConvolutionTransformerDecoder from funasr_local.models.decoder.transformer_decoder import ( LightweightConvolution2DTransformerDecoder, # noqa: H301 ) from funasr_local.models.decoder.transformer_decoder import ( LightweightConvolutionTransformerDecoder, # noqa: H301 ) from funasr_local.models.decoder.transformer_decoder import TransformerDecoder from funasr_local.models.encoder.abs_encoder import AbsEncoder from funasr_local.models.encoder.conformer_encoder import ConformerEncoder from funasr_local.models.encoder.data2vec_encoder import Data2VecEncoder from funasr_local.models.encoder.rnn_encoder import RNNEncoder from funasr_local.models.encoder.transformer_encoder import TransformerEncoder from funasr_local.models.frontend.abs_frontend import AbsFrontend from funasr_local.models.frontend.default import DefaultFrontend from funasr_local.models.frontend.fused import FusedFrontends from funasr_local.models.frontend.wav_frontend import WavFrontend, WavFrontendOnline from funasr_local.models.frontend.s3prl import S3prlFrontend from funasr_local.models.frontend.windowing import SlidingWindow from funasr_local.models.postencoder.abs_postencoder import AbsPostEncoder from funasr_local.models.postencoder.hugging_face_transformers_postencoder import ( HuggingFaceTransformersPostEncoder, # noqa: H301 ) from funasr_local.models.preencoder.abs_preencoder import AbsPreEncoder from funasr_local.models.preencoder.linear import LinearProjection from funasr_local.models.preencoder.sinc import LightweightSincConvs from funasr_local.models.specaug.abs_specaug import AbsSpecAug from funasr_local.models.specaug.specaug import SpecAug from funasr_local.layers.abs_normalize import AbsNormalize from funasr_local.layers.global_mvn import GlobalMVN from funasr_local.layers.utterance_mvn import UtteranceMVN from funasr_local.tasks.abs_task import AbsTask from funasr_local.text.phoneme_tokenizer import g2p_choices from funasr_local.train.abs_espnet_model import AbsESPnetModel from funasr_local.train.class_choices import ClassChoices from funasr_local.train.trainer import Trainer from funasr_local.utils.get_default_kwargs import get_default_kwargs from funasr_local.utils.nested_dict_action import NestedDictAction from funasr_local.utils.types import float_or_none from funasr_local.utils.types import int_or_none from funasr_local.utils.types import str2bool from funasr_local.utils.types import str_or_none from funasr_local.models.specaug.specaug import SpecAugLFR from funasr_local.models.predictor.cif import CifPredictor, CifPredictorV2 from funasr_local.modules.subsampling import Conv1dSubsampling from funasr_local.models.e2e_vad import E2EVadModel from funasr_local.models.encoder.fsmn_encoder import FSMN frontend_choices = ClassChoices( name="frontend", classes=dict( default=DefaultFrontend, sliding_window=SlidingWindow, s3prl=S3prlFrontend, fused=FusedFrontends, wav_frontend=WavFrontend, wav_frontend_online=WavFrontendOnline, ), type_check=AbsFrontend, default="default", ) specaug_choices = ClassChoices( name="specaug", classes=dict( specaug=SpecAug, specaug_lfr=SpecAugLFR, ), type_check=AbsSpecAug, default=None, optional=True, ) normalize_choices = ClassChoices( "normalize", classes=dict( global_mvn=GlobalMVN, utterance_mvn=UtteranceMVN, ), type_check=AbsNormalize, default=None, optional=True, ) model_choices = ClassChoices( "model", classes=dict( e2evad=E2EVadModel, ), type_check=object, default="e2evad", ) encoder_choices = ClassChoices( "encoder", classes=dict( fsmn=FSMN, ), type_check=torch.nn.Module, default="fsmn", ) class VADTask(AbsTask): # If you need more than one optimizers, change this value num_optimizers: int = 1 # Add variable objects configurations class_choices_list = [ # --frontend and --frontend_conf frontend_choices, # --model and --model_conf model_choices, ] # If you need to modify train() or eval() procedures, change Trainer class here trainer = Trainer @classmethod def add_task_arguments(cls, parser: argparse.ArgumentParser): group = parser.add_argument_group(description="Task related") # NOTE(kamo): add_arguments(..., required=True) can't be used # to provide --print_config mode. Instead of it, do as # required = parser.get_default("required") # required += ["token_list"] group.add_argument( "--init", type=lambda x: str_or_none(x.lower()), default=None, help="The initialization method", choices=[ "chainer", "xavier_uniform", "xavier_normal", "kaiming_uniform", "kaiming_normal", None, ], ) group.add_argument( "--input_size", type=int_or_none, default=None, help="The number of input dimension of the feature", ) group = parser.add_argument_group(description="Preprocess related") parser.add_argument( "--speech_volume_normalize", type=float_or_none, default=None, help="Scale the maximum amplitude to the given value.", ) parser.add_argument( "--rir_scp", type=str_or_none, default=None, help="The file path of rir scp file.", ) parser.add_argument( "--rir_apply_prob", type=float, default=1.0, help="THe probability for applying RIR convolution.", ) parser.add_argument( "--cmvn_file", type=str_or_none, default=None, help="The file path of noise scp file.", ) parser.add_argument( "--noise_scp", type=str_or_none, default=None, help="The file path of noise scp file.", ) parser.add_argument( "--noise_apply_prob", type=float, default=1.0, help="The probability applying Noise adding.", ) parser.add_argument( "--noise_db_range", type=str, default="13_15", help="The range of noise decibel level.", ) for class_choices in cls.class_choices_list: # Append -- and --_conf. # e.g. --encoder and --encoder_conf class_choices.add_arguments(group) @classmethod def build_collate_fn( cls, args: argparse.Namespace, train: bool ) -> Callable[ [Collection[Tuple[str, Dict[str, np.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]], ]: assert check_argument_types() # NOTE(kamo): int value = 0 is reserved by CTC-blank symbol return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1) @classmethod def build_preprocess_fn( cls, args: argparse.Namespace, train: bool ) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]: assert check_argument_types() # if args.use_preprocessor: # retval = CommonPreprocessor( # train=train, # # NOTE(kamo): Check attribute existence for backward compatibility # rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None, # rir_apply_prob=args.rir_apply_prob # if hasattr(args, "rir_apply_prob") # else 1.0, # noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None, # noise_apply_prob=args.noise_apply_prob # if hasattr(args, "noise_apply_prob") # else 1.0, # noise_db_range=args.noise_db_range # if hasattr(args, "noise_db_range") # else "13_15", # speech_volume_normalize=args.speech_volume_normalize # if hasattr(args, "rir_scp") # else None, # ) # else: # retval = None retval = None assert check_return_type(retval) return retval @classmethod def required_data_names( cls, train: bool = True, inference: bool = False ) -> Tuple[str, ...]: if not inference: retval = ("speech", "text") else: # Recognition mode retval = ("speech",) return retval @classmethod def optional_data_names( cls, train: bool = True, inference: bool = False ) -> Tuple[str, ...]: retval = () assert check_return_type(retval) return retval @classmethod def build_model(cls, args: argparse.Namespace): assert check_argument_types() # 4. Encoder encoder_class = encoder_choices.get_class(args.encoder) encoder = encoder_class(**args.encoder_conf) # 5. Build model try: model_class = model_choices.get_class(args.model) except AttributeError: model_class = model_choices.get_class("e2evad") # 1. frontend if args.input_size is None: # Extract features in the model frontend_class = frontend_choices.get_class(args.frontend) if args.frontend == 'wav_frontend': frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf) else: frontend = frontend_class(**args.frontend_conf) input_size = frontend.output_size() else: # Give features from data-loader args.frontend = None args.frontend_conf = {} frontend = None input_size = args.input_size model = model_class(encoder=encoder, vad_post_args=args.vad_post_conf, frontend=frontend) return model # ~~~~~~~~~ The methods below are mainly used for inference ~~~~~~~~~ @classmethod def build_model_from_file( cls, config_file: Union[Path, str] = None, model_file: Union[Path, str] = None, device: str = "cpu", cmvn_file: Union[Path, str] = None, ): """Build model from the files. This method is used for inference or fine-tuning. Args: config_file: The yaml file saved when training. model_file: The model file saved when training. device: Device type, "cpu", "cuda", or "cuda:N". """ assert check_argument_types() if config_file is None: assert model_file is not None, ( "The argument 'model_file' must be provided " "if the argument 'config_file' is not specified." ) config_file = Path(model_file).parent / "config.yaml" else: config_file = Path(config_file) with config_file.open("r", encoding="utf-8") as f: args = yaml.safe_load(f) #if cmvn_file is not None: args["cmvn_file"] = cmvn_file args = argparse.Namespace(**args) model = cls.build_model(args) model.to(device) model_dict = dict() model_name_pth = None if model_file is not None: logging.info("model_file is {}".format(model_file)) if device == "cuda": device = f"cuda:{torch.cuda.current_device()}" model_dir = os.path.dirname(model_file) model_name = os.path.basename(model_file) model_dict = torch.load(model_file, map_location=device) model.encoder.load_state_dict(model_dict) return model, args