mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
159
funasr_local/utils/compute_min_dcf.py
Normal file
159
funasr_local/utils/compute_min_dcf.py
Normal file
@@ -0,0 +1,159 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2018 David Snyder
|
||||
# Apache 2.0
|
||||
|
||||
# This script computes the minimum detection cost function, which is a common
|
||||
# error metric used in speaker recognition. Compared to equal error-rate,
|
||||
# which assigns equal weight to false negatives and false positives, this
|
||||
# error-rate is usually used to assess performance in settings where achieving
|
||||
# a low false positive rate is more important than achieving a low false
|
||||
# negative rate. See the NIST 2016 Speaker Recognition Evaluation Plan at
|
||||
# https://www.nist.gov/sites/default/files/documents/2016/10/07/sre16_eval_plan_v1.3.pdf
|
||||
# for more details about the metric.
|
||||
from __future__ import print_function
|
||||
from operator import itemgetter
|
||||
import sys, argparse, os
|
||||
|
||||
|
||||
def GetArgs():
|
||||
parser = argparse.ArgumentParser(description="Compute the minimum "
|
||||
"detection cost function along with the threshold at which it occurs. "
|
||||
"Usage: sid/compute_min_dcf.py [options...] <scores-file> "
|
||||
"<trials-file> "
|
||||
"E.g., sid/compute_min_dcf.py --p-target 0.01 --c-miss 1 --c-fa 1 "
|
||||
"exp/scores/trials data/test/trials",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--p-target', type=float, dest="p_target",
|
||||
default=0.01,
|
||||
help='The prior probability of the target speaker in a trial.')
|
||||
parser.add_argument('--c-miss', type=float, dest="c_miss", default=1,
|
||||
help='Cost of a missed detection. This is usually not changed.')
|
||||
parser.add_argument('--c-fa', type=float, dest="c_fa", default=1,
|
||||
help='Cost of a spurious detection. This is usually not changed.')
|
||||
parser.add_argument("scores_filename",
|
||||
help="Input scores file, with columns of the form "
|
||||
"<utt1> <utt2> <score>")
|
||||
parser.add_argument("trials_filename",
|
||||
help="Input trials file, with columns of the form "
|
||||
"<utt1> <utt2> <target/nontarget>")
|
||||
sys.stderr.write(' '.join(sys.argv) + "\n")
|
||||
args = parser.parse_args()
|
||||
args = CheckArgs(args)
|
||||
return args
|
||||
|
||||
|
||||
def CheckArgs(args):
|
||||
if args.c_fa <= 0:
|
||||
raise Exception("--c-fa must be greater than 0")
|
||||
if args.c_miss <= 0:
|
||||
raise Exception("--c-miss must be greater than 0")
|
||||
if args.p_target <= 0 or args.p_target >= 1:
|
||||
raise Exception("--p-target must be greater than 0 and less than 1")
|
||||
return args
|
||||
|
||||
|
||||
# Creates a list of false-negative rates, a list of false-positive rates
|
||||
# and a list of decision thresholds that give those error-rates.
|
||||
def ComputeErrorRates(scores, labels):
|
||||
|
||||
# Sort the scores from smallest to largest, and also get the corresponding
|
||||
# indexes of the sorted scores. We will treat the sorted scores as the
|
||||
# thresholds at which the the error-rates are evaluated.
|
||||
sorted_indexes, thresholds = zip(*sorted(
|
||||
[(index, threshold) for index, threshold in enumerate(scores)],
|
||||
key=itemgetter(1)))
|
||||
labels = [labels[i] for i in sorted_indexes]
|
||||
fns = []
|
||||
tns = []
|
||||
|
||||
# At the end of this loop, fns[i] is the number of errors made by
|
||||
# incorrectly rejecting scores less than thresholds[i]. And, tns[i]
|
||||
# is the total number of times that we have correctly rejected scores
|
||||
# less than thresholds[i].
|
||||
for i in range(0, len(labels)):
|
||||
if i == 0:
|
||||
fns.append(labels[i])
|
||||
tns.append(1 - labels[i])
|
||||
else:
|
||||
fns.append(fns[i-1] + labels[i])
|
||||
tns.append(tns[i-1] + 1 - labels[i])
|
||||
positives = sum(labels)
|
||||
negatives = len(labels) - positives
|
||||
|
||||
# Now divide the false negatives by the total number of
|
||||
# positives to obtain the false negative rates across
|
||||
# all thresholds
|
||||
fnrs = [fn / float(positives) for fn in fns]
|
||||
|
||||
# Divide the true negatives by the total number of
|
||||
# negatives to get the true negative rate. Subtract these
|
||||
# quantities from 1 to get the false positive rates.
|
||||
fprs = [1 - tn / float(negatives) for tn in tns]
|
||||
return fnrs, fprs, thresholds
|
||||
|
||||
|
||||
# Computes the minimum of the detection cost function. The comments refer to
|
||||
# equations in Section 3 of the NIST 2016 Speaker Recognition Evaluation Plan.
|
||||
def ComputeMinDcf(fnrs, fprs, thresholds, p_target, c_miss, c_fa):
|
||||
min_c_det = float("inf")
|
||||
min_c_det_threshold = thresholds[0]
|
||||
for i in range(0, len(fnrs)):
|
||||
# See Equation (2). it is a weighted sum of false negative
|
||||
# and false positive errors.
|
||||
c_det = c_miss * fnrs[i] * p_target + c_fa * fprs[i] * (1 - p_target)
|
||||
if c_det < min_c_det:
|
||||
min_c_det = c_det
|
||||
min_c_det_threshold = thresholds[i]
|
||||
# See Equations (3) and (4). Now we normalize the cost.
|
||||
c_def = min(c_miss * p_target, c_fa * (1 - p_target))
|
||||
min_dcf = min_c_det / c_def
|
||||
return min_dcf, min_c_det_threshold
|
||||
|
||||
|
||||
def compute_min_dcf(scores_filename, trials_filename, c_miss=1, c_fa=1, p_target=0.01):
|
||||
scores_file = open(scores_filename, 'r').readlines()
|
||||
trials_file = open(trials_filename, 'r').readlines()
|
||||
c_miss = c_miss
|
||||
c_fa = c_fa
|
||||
p_target = p_target
|
||||
|
||||
scores = []
|
||||
labels = []
|
||||
|
||||
trials = {}
|
||||
for line in trials_file:
|
||||
utt1, utt2, target = line.rstrip().split()
|
||||
trial = utt1 + " " + utt2
|
||||
trials[trial] = target
|
||||
|
||||
for line in scores_file:
|
||||
utt1, utt2, score = line.rstrip().split()
|
||||
trial = utt1 + " " + utt2
|
||||
if trial in trials:
|
||||
scores.append(float(score))
|
||||
if trials[trial] == "target":
|
||||
labels.append(1)
|
||||
else:
|
||||
labels.append(0)
|
||||
else:
|
||||
raise Exception("Missing entry for " + utt1 + " and " + utt2
|
||||
+ " " + scores_filename)
|
||||
|
||||
fnrs, fprs, thresholds = ComputeErrorRates(scores, labels)
|
||||
mindcf, threshold = ComputeMinDcf(fnrs, fprs, thresholds, p_target,
|
||||
c_miss, c_fa)
|
||||
return mindcf, threshold
|
||||
|
||||
|
||||
def main():
|
||||
args = GetArgs()
|
||||
mindcf, threshold = compute_min_dcf(
|
||||
args.scores_filename, args.trials_filename,
|
||||
args.c_miss, args.c_fa, args.p_target
|
||||
)
|
||||
sys.stdout.write("minDCF is {0:.4f} at threshold {1:.4f} (p-target={2}, c-miss={3}, "
|
||||
"c-fa={4})\n".format(mindcf, threshold, args.p_target, args.c_miss, args.c_fa))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user