mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
70
funasr_local/torch_utils/model_summary.py
Normal file
70
funasr_local/torch_utils/model_summary.py
Normal file
@@ -0,0 +1,70 @@
|
||||
import humanfriendly
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
def get_human_readable_count(number: int) -> str:
|
||||
"""Return human_readable_count
|
||||
|
||||
Originated from:
|
||||
https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pytorch_lightning/core/memory.py
|
||||
|
||||
Abbreviates an integer number with K, M, B, T for thousands, millions,
|
||||
billions and trillions, respectively.
|
||||
Examples:
|
||||
>>> get_human_readable_count(123)
|
||||
'123 '
|
||||
>>> get_human_readable_count(1234) # (one thousand)
|
||||
'1 K'
|
||||
>>> get_human_readable_count(2e6) # (two million)
|
||||
'2 M'
|
||||
>>> get_human_readable_count(3e9) # (three billion)
|
||||
'3 B'
|
||||
>>> get_human_readable_count(4e12) # (four trillion)
|
||||
'4 T'
|
||||
>>> get_human_readable_count(5e15) # (more than trillion)
|
||||
'5,000 T'
|
||||
Args:
|
||||
number: a positive integer number
|
||||
Return:
|
||||
A string formatted according to the pattern described above.
|
||||
"""
|
||||
assert number >= 0
|
||||
labels = [" ", "K", "M", "B", "T"]
|
||||
num_digits = int(np.floor(np.log10(number)) + 1 if number > 0 else 1)
|
||||
num_groups = int(np.ceil(num_digits / 3))
|
||||
num_groups = min(num_groups, len(labels)) # don't abbreviate beyond trillions
|
||||
shift = -3 * (num_groups - 1)
|
||||
number = number * (10**shift)
|
||||
index = num_groups - 1
|
||||
return f"{number:.2f} {labels[index]}"
|
||||
|
||||
|
||||
def to_bytes(dtype) -> int:
|
||||
# torch.float16 -> 16
|
||||
return int(str(dtype)[-2:]) // 8
|
||||
|
||||
|
||||
def model_summary(model: torch.nn.Module) -> str:
|
||||
message = "Model structure:\n"
|
||||
message += str(model)
|
||||
tot_params = sum(p.numel() for p in model.parameters())
|
||||
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
percent_trainable = "{:.1f}".format(num_params * 100.0 / tot_params)
|
||||
tot_params = get_human_readable_count(tot_params)
|
||||
num_params = get_human_readable_count(num_params)
|
||||
message += "\n\nModel summary:\n"
|
||||
message += f" Class Name: {model.__class__.__name__}\n"
|
||||
message += f" Total Number of model parameters: {tot_params}\n"
|
||||
message += (
|
||||
f" Number of trainable parameters: {num_params} ({percent_trainable}%)\n"
|
||||
)
|
||||
num_bytes = humanfriendly.format_size(
|
||||
sum(
|
||||
p.numel() * to_bytes(p.dtype) for p in model.parameters() if p.requires_grad
|
||||
)
|
||||
)
|
||||
message += f" Size: {num_bytes}\n"
|
||||
dtype = next(iter(model.parameters())).dtype
|
||||
message += f" Type: {dtype}"
|
||||
return message
|
||||
Reference in New Issue
Block a user