mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
125
funasr_local/torch_utils/load_pretrained_model.py
Normal file
125
funasr_local/torch_utils/load_pretrained_model.py
Normal file
@@ -0,0 +1,125 @@
|
||||
from typing import Any
|
||||
from typing import Dict
|
||||
from typing import Union
|
||||
from io import BytesIO
|
||||
|
||||
import logging
|
||||
import torch
|
||||
import torch.nn
|
||||
import torch.optim
|
||||
|
||||
|
||||
def filter_state_dict(
|
||||
dst_state: Dict[str, Union[float, torch.Tensor]],
|
||||
src_state: Dict[str, Union[float, torch.Tensor]],
|
||||
):
|
||||
"""Filter name, size mismatch instances between dicts.
|
||||
|
||||
Args:
|
||||
dst_state: reference state dict for filtering
|
||||
src_state: target state dict for filtering
|
||||
|
||||
"""
|
||||
match_state = {}
|
||||
for key, value in src_state.items():
|
||||
if key in dst_state and (dst_state[key].size() == src_state[key].size()):
|
||||
match_state[key] = value
|
||||
else:
|
||||
if key not in dst_state:
|
||||
logging.warning(
|
||||
f"Filter out {key} from pretrained dict"
|
||||
+ " because of name not found in target dict"
|
||||
)
|
||||
else:
|
||||
logging.warning(
|
||||
f"Filter out {key} from pretrained dict"
|
||||
+ " because of size mismatch"
|
||||
+ f"({dst_state[key].size()}-{src_state[key].size()})"
|
||||
)
|
||||
return match_state
|
||||
|
||||
|
||||
def load_pretrained_model(
|
||||
init_param: str,
|
||||
model: torch.nn.Module,
|
||||
ignore_init_mismatch: bool,
|
||||
map_location: str = "cpu",
|
||||
oss_bucket=None,
|
||||
):
|
||||
"""Load a model state and set it to the model.
|
||||
|
||||
Args:
|
||||
init_param: <file_path>:<src_key>:<dst_key>:<exclude_Keys>
|
||||
|
||||
Examples:
|
||||
>>> load_pretrained_model("somewhere/model.pb", model)
|
||||
>>> load_pretrained_model("somewhere/model.pb:decoder:decoder", model)
|
||||
>>> load_pretrained_model("somewhere/model.pb:decoder:decoder:", model)
|
||||
>>> load_pretrained_model(
|
||||
... "somewhere/model.pb:decoder:decoder:decoder.embed", model
|
||||
... )
|
||||
>>> load_pretrained_model("somewhere/decoder.pb::decoder", model)
|
||||
"""
|
||||
sps = init_param.split(":", 4)
|
||||
if len(sps) == 4:
|
||||
path, src_key, dst_key, excludes = sps
|
||||
elif len(sps) == 3:
|
||||
path, src_key, dst_key = sps
|
||||
excludes = None
|
||||
elif len(sps) == 2:
|
||||
path, src_key = sps
|
||||
dst_key, excludes = None, None
|
||||
else:
|
||||
(path,) = sps
|
||||
src_key, dst_key, excludes = None, None, None
|
||||
if src_key == "":
|
||||
src_key = None
|
||||
if dst_key == "":
|
||||
dst_key = None
|
||||
|
||||
if dst_key is None:
|
||||
obj = model
|
||||
else:
|
||||
|
||||
def get_attr(obj: Any, key: str):
|
||||
"""Get an nested attribute.
|
||||
|
||||
>>> class A(torch.nn.Module):
|
||||
... def __init__(self):
|
||||
... super().__init__()
|
||||
... self.linear = torch.nn.Linear(10, 10)
|
||||
>>> a = A()
|
||||
>>> assert A.linear.weight is get_attr(A, 'linear.weight')
|
||||
|
||||
"""
|
||||
if key.strip() == "":
|
||||
return obj
|
||||
for k in key.split("."):
|
||||
obj = getattr(obj, k)
|
||||
return obj
|
||||
|
||||
obj = get_attr(model, dst_key)
|
||||
|
||||
if oss_bucket is None:
|
||||
src_state = torch.load(path, map_location=map_location)
|
||||
else:
|
||||
buffer = BytesIO(oss_bucket.get_object(path).read())
|
||||
src_state = torch.load(buffer, map_location=map_location)
|
||||
if excludes is not None:
|
||||
for e in excludes.split(","):
|
||||
src_state = {k: v for k, v in src_state.items() if not k.startswith(e)}
|
||||
|
||||
if src_key is not None:
|
||||
src_state = {
|
||||
k[len(src_key) + 1 :]: v
|
||||
for k, v in src_state.items()
|
||||
if k.startswith(src_key)
|
||||
}
|
||||
|
||||
dst_state = obj.state_dict()
|
||||
if ignore_init_mismatch:
|
||||
src_state = filter_state_dict(dst_state, src_state)
|
||||
|
||||
logging.info("Loaded src_state keys: {}".format(src_state.keys()))
|
||||
dst_state.update(src_state)
|
||||
obj.load_state_dict(dst_state)
|
||||
Reference in New Issue
Block a user