mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
102
funasr_local/torch_utils/initialize.py
Normal file
102
funasr_local/torch_utils/initialize.py
Normal file
@@ -0,0 +1,102 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
"""Initialize modules for espnet2 neural networks."""
|
||||
|
||||
import math
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
|
||||
|
||||
def initialize(model: torch.nn.Module, init: str):
|
||||
"""Initialize weights of a neural network module.
|
||||
|
||||
Parameters are initialized using the given method or distribution.
|
||||
|
||||
Custom initialization routines can be implemented into submodules
|
||||
as function `espnet_initialization_fn` within the custom module.
|
||||
|
||||
Args:
|
||||
model: Target.
|
||||
init: Method of initialization.
|
||||
"""
|
||||
assert check_argument_types()
|
||||
|
||||
if init == "chainer":
|
||||
# 1. lecun_normal_init_parameters
|
||||
for p in model.parameters():
|
||||
data = p.data
|
||||
if data.dim() == 1:
|
||||
# bias
|
||||
data.zero_()
|
||||
elif data.dim() == 2:
|
||||
# linear weight
|
||||
n = data.size(1)
|
||||
stdv = 1.0 / math.sqrt(n)
|
||||
data.normal_(0, stdv)
|
||||
elif data.dim() in (3, 4):
|
||||
# conv weight
|
||||
n = data.size(1)
|
||||
for k in data.size()[2:]:
|
||||
n *= k
|
||||
stdv = 1.0 / math.sqrt(n)
|
||||
data.normal_(0, stdv)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
for mod in model.modules():
|
||||
# 2. embed weight ~ Normal(0, 1)
|
||||
if isinstance(mod, torch.nn.Embedding):
|
||||
mod.weight.data.normal_(0, 1)
|
||||
# 3. forget-bias = 1.0
|
||||
elif isinstance(mod, torch.nn.RNNCellBase):
|
||||
n = mod.bias_ih.size(0)
|
||||
mod.bias_ih.data[n // 4 : n // 2].fill_(1.0)
|
||||
elif isinstance(mod, torch.nn.RNNBase):
|
||||
for name, param in mod.named_parameters():
|
||||
if "bias" in name:
|
||||
n = param.size(0)
|
||||
param.data[n // 4 : n // 2].fill_(1.0)
|
||||
if hasattr(mod, "espnet_initialization_fn"):
|
||||
mod.espnet_initialization_fn()
|
||||
|
||||
else:
|
||||
# weight init
|
||||
for p in model.parameters():
|
||||
if p.dim() > 1:
|
||||
if init == "xavier_uniform":
|
||||
torch.nn.init.xavier_uniform_(p.data)
|
||||
elif init == "xavier_normal":
|
||||
torch.nn.init.xavier_normal_(p.data)
|
||||
elif init == "kaiming_uniform":
|
||||
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
|
||||
elif init == "kaiming_normal":
|
||||
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
|
||||
else:
|
||||
raise ValueError("Unknown initialization: " + init)
|
||||
# bias init
|
||||
for p in model.parameters():
|
||||
if p.dim() == 1:
|
||||
p.data.zero_()
|
||||
|
||||
# reset some modules with default init
|
||||
for m in model.modules():
|
||||
if isinstance(
|
||||
m, (torch.nn.Embedding, torch.nn.LayerNorm, torch.nn.GroupNorm)
|
||||
):
|
||||
m.reset_parameters()
|
||||
if hasattr(m, "espnet_initialization_fn"):
|
||||
m.espnet_initialization_fn()
|
||||
|
||||
# TODO(xkc): Hacking s3prl_frontend and wav2vec2encoder initialization
|
||||
if getattr(model, "encoder", None) and getattr(
|
||||
model.encoder, "reload_pretrained_parameters", None
|
||||
):
|
||||
model.encoder.reload_pretrained_parameters()
|
||||
if getattr(model, "frontend", None) and getattr(
|
||||
model.frontend, "reload_pretrained_parameters", None
|
||||
):
|
||||
model.frontend.reload_pretrained_parameters()
|
||||
if getattr(model, "postencoder", None) and getattr(
|
||||
model.postencoder, "reload_pretrained_parameters", None
|
||||
):
|
||||
model.postencoder.reload_pretrained_parameters()
|
||||
Reference in New Issue
Block a user