mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
545
funasr_local/tasks/sv.py
Normal file
545
funasr_local/tasks/sv.py
Normal file
@@ -0,0 +1,545 @@
|
||||
"""
|
||||
Author: Speech Lab, Alibaba Group, China
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
from typing import Collection
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import yaml
|
||||
from typeguard import check_argument_types
|
||||
from typeguard import check_return_type
|
||||
|
||||
from funasr_local.datasets.collate_fn import CommonCollateFn
|
||||
from funasr_local.datasets.preprocessor import CommonPreprocessor
|
||||
from funasr_local.layers.abs_normalize import AbsNormalize
|
||||
from funasr_local.layers.global_mvn import GlobalMVN
|
||||
from funasr_local.layers.utterance_mvn import UtteranceMVN
|
||||
from funasr_local.models.e2e_asr import ESPnetASRModel
|
||||
from funasr_local.models.decoder.abs_decoder import AbsDecoder
|
||||
from funasr_local.models.encoder.abs_encoder import AbsEncoder
|
||||
from funasr_local.models.encoder.rnn_encoder import RNNEncoder
|
||||
from funasr_local.models.encoder.resnet34_encoder import ResNet34, ResNet34_SP_L2Reg
|
||||
from funasr_local.models.pooling.statistic_pooling import StatisticPooling
|
||||
from funasr_local.models.decoder.sv_decoder import DenseDecoder
|
||||
from funasr_local.models.e2e_sv import ESPnetSVModel
|
||||
from funasr_local.models.frontend.abs_frontend import AbsFrontend
|
||||
from funasr_local.models.frontend.default import DefaultFrontend
|
||||
from funasr_local.models.frontend.fused import FusedFrontends
|
||||
from funasr_local.models.frontend.s3prl import S3prlFrontend
|
||||
from funasr_local.models.frontend.windowing import SlidingWindow
|
||||
from funasr_local.models.postencoder.abs_postencoder import AbsPostEncoder
|
||||
from funasr_local.models.postencoder.hugging_face_transformers_postencoder import (
|
||||
HuggingFaceTransformersPostEncoder, # noqa: H301
|
||||
)
|
||||
from funasr_local.models.preencoder.abs_preencoder import AbsPreEncoder
|
||||
from funasr_local.models.preencoder.linear import LinearProjection
|
||||
from funasr_local.models.preencoder.sinc import LightweightSincConvs
|
||||
from funasr_local.models.specaug.abs_specaug import AbsSpecAug
|
||||
from funasr_local.models.specaug.specaug import SpecAug
|
||||
from funasr_local.tasks.abs_task import AbsTask
|
||||
from funasr_local.torch_utils.initialize import initialize
|
||||
from funasr_local.train.abs_espnet_model import AbsESPnetModel
|
||||
from funasr_local.train.class_choices import ClassChoices
|
||||
from funasr_local.train.trainer import Trainer
|
||||
from funasr_local.utils.types import float_or_none
|
||||
from funasr_local.utils.types import int_or_none
|
||||
from funasr_local.utils.types import str2bool
|
||||
from funasr_local.utils.types import str_or_none
|
||||
from funasr_local.models.frontend.wav_frontend import WavFrontend
|
||||
|
||||
frontend_choices = ClassChoices(
|
||||
name="frontend",
|
||||
classes=dict(
|
||||
default=DefaultFrontend,
|
||||
sliding_window=SlidingWindow,
|
||||
s3prl=S3prlFrontend,
|
||||
fused=FusedFrontends,
|
||||
wav_frontend=WavFrontend,
|
||||
),
|
||||
type_check=AbsFrontend,
|
||||
default="default",
|
||||
)
|
||||
specaug_choices = ClassChoices(
|
||||
name="specaug",
|
||||
classes=dict(
|
||||
specaug=SpecAug,
|
||||
),
|
||||
type_check=AbsSpecAug,
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
normalize_choices = ClassChoices(
|
||||
"normalize",
|
||||
classes=dict(
|
||||
global_mvn=GlobalMVN,
|
||||
utterance_mvn=UtteranceMVN,
|
||||
),
|
||||
type_check=AbsNormalize,
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
model_choices = ClassChoices(
|
||||
"model",
|
||||
classes=dict(
|
||||
espnet=ESPnetSVModel,
|
||||
),
|
||||
type_check=AbsESPnetModel,
|
||||
default="espnet",
|
||||
)
|
||||
preencoder_choices = ClassChoices(
|
||||
name="preencoder",
|
||||
classes=dict(
|
||||
sinc=LightweightSincConvs,
|
||||
linear=LinearProjection,
|
||||
),
|
||||
type_check=AbsPreEncoder,
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
encoder_choices = ClassChoices(
|
||||
"encoder",
|
||||
classes=dict(
|
||||
resnet34=ResNet34,
|
||||
resnet34_sp_l2reg=ResNet34_SP_L2Reg,
|
||||
rnn=RNNEncoder,
|
||||
),
|
||||
type_check=AbsEncoder,
|
||||
default="resnet34",
|
||||
)
|
||||
postencoder_choices = ClassChoices(
|
||||
name="postencoder",
|
||||
classes=dict(
|
||||
hugging_face_transformers=HuggingFaceTransformersPostEncoder,
|
||||
),
|
||||
type_check=AbsPostEncoder,
|
||||
default=None,
|
||||
optional=True,
|
||||
)
|
||||
pooling_choices = ClassChoices(
|
||||
name="pooling_type",
|
||||
classes=dict(
|
||||
statistic=StatisticPooling,
|
||||
),
|
||||
type_check=torch.nn.Module,
|
||||
default="statistic",
|
||||
)
|
||||
decoder_choices = ClassChoices(
|
||||
"decoder",
|
||||
classes=dict(
|
||||
dense=DenseDecoder,
|
||||
),
|
||||
type_check=AbsDecoder,
|
||||
default="dense",
|
||||
)
|
||||
|
||||
|
||||
class SVTask(AbsTask):
|
||||
# If you need more than one optimizers, change this value
|
||||
num_optimizers: int = 1
|
||||
|
||||
# Add variable objects configurations
|
||||
class_choices_list = [
|
||||
# --frontend and --frontend_conf
|
||||
frontend_choices,
|
||||
# --specaug and --specaug_conf
|
||||
specaug_choices,
|
||||
# --normalize and --normalize_conf
|
||||
normalize_choices,
|
||||
# --model and --model_conf
|
||||
model_choices,
|
||||
# --preencoder and --preencoder_conf
|
||||
preencoder_choices,
|
||||
# --encoder and --encoder_conf
|
||||
encoder_choices,
|
||||
# --postencoder and --postencoder_conf
|
||||
postencoder_choices,
|
||||
# --pooling and --pooling_conf
|
||||
pooling_choices,
|
||||
# --decoder and --decoder_conf
|
||||
decoder_choices,
|
||||
]
|
||||
|
||||
# If you need to modify train() or eval() procedures, change Trainer class here
|
||||
trainer = Trainer
|
||||
|
||||
@classmethod
|
||||
def add_task_arguments(cls, parser: argparse.ArgumentParser):
|
||||
group = parser.add_argument_group(description="Task related")
|
||||
|
||||
# NOTE(kamo): add_arguments(..., required=True) can't be used
|
||||
# to provide --print_config mode. Instead of it, do as
|
||||
required = parser.get_default("required")
|
||||
required += ["token_list"]
|
||||
|
||||
group.add_argument(
|
||||
"--token_list",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
help="A text mapping int-id to speaker name",
|
||||
)
|
||||
group.add_argument(
|
||||
"--init",
|
||||
type=lambda x: str_or_none(x.lower()),
|
||||
default=None,
|
||||
help="The initialization method",
|
||||
choices=[
|
||||
"chainer",
|
||||
"xavier_uniform",
|
||||
"xavier_normal",
|
||||
"kaiming_uniform",
|
||||
"kaiming_normal",
|
||||
None,
|
||||
],
|
||||
)
|
||||
|
||||
group.add_argument(
|
||||
"--input_size",
|
||||
type=int_or_none,
|
||||
default=None,
|
||||
help="The number of input dimension of the feature",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group(description="Preprocess related")
|
||||
group.add_argument(
|
||||
"--use_preprocessor",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Apply preprocessing to data or not",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cleaner",
|
||||
type=str_or_none,
|
||||
choices=[None, "tacotron", "jaconv", "vietnamese"],
|
||||
default=None,
|
||||
help="Apply text cleaning",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--speech_volume_normalize",
|
||||
type=float_or_none,
|
||||
default=None,
|
||||
help="Scale the maximum amplitude to the given value.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rir_scp",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
help="The file path of rir scp file.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rir_apply_prob",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="THe probability for applying RIR convolution.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--noise_scp",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
help="The file path of noise scp file.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--noise_apply_prob",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The probability applying Noise adding.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--noise_db_range",
|
||||
type=str,
|
||||
default="13_15",
|
||||
help="The range of noise decibel level.",
|
||||
)
|
||||
|
||||
for class_choices in cls.class_choices_list:
|
||||
# Append --<name> and --<name>_conf.
|
||||
# e.g. --encoder and --encoder_conf
|
||||
class_choices.add_arguments(group)
|
||||
|
||||
@classmethod
|
||||
def build_collate_fn(
|
||||
cls, args: argparse.Namespace, train: bool
|
||||
) -> Callable[
|
||||
[Collection[Tuple[str, Dict[str, np.ndarray]]]],
|
||||
Tuple[List[str], Dict[str, torch.Tensor]],
|
||||
]:
|
||||
assert check_argument_types()
|
||||
# NOTE(kamo): int value = 0 is reserved by CTC-blank symbol
|
||||
return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
|
||||
|
||||
@classmethod
|
||||
def build_preprocess_fn(
|
||||
cls, args: argparse.Namespace, train: bool
|
||||
) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
|
||||
assert check_argument_types()
|
||||
if args.use_preprocessor:
|
||||
retval = CommonPreprocessor(
|
||||
train=train,
|
||||
token_type=None,
|
||||
token_list=None,
|
||||
bpemodel=None,
|
||||
non_linguistic_symbols=None,
|
||||
text_cleaner=args.cleaner,
|
||||
g2p_type=None,
|
||||
# NOTE(kamo): Check attribute existence for backward compatibility
|
||||
rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None,
|
||||
rir_apply_prob=args.rir_apply_prob
|
||||
if hasattr(args, "rir_apply_prob")
|
||||
else 1.0,
|
||||
noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None,
|
||||
noise_apply_prob=args.noise_apply_prob
|
||||
if hasattr(args, "noise_apply_prob")
|
||||
else 1.0,
|
||||
noise_db_range=args.noise_db_range
|
||||
if hasattr(args, "noise_db_range")
|
||||
else "13_15",
|
||||
speech_volume_normalize=args.speech_volume_normalize
|
||||
if hasattr(args, "rir_scp")
|
||||
else None,
|
||||
)
|
||||
else:
|
||||
retval = None
|
||||
assert check_return_type(retval)
|
||||
return retval
|
||||
|
||||
@classmethod
|
||||
def required_data_names(
|
||||
cls, train: bool = True, inference: bool = False
|
||||
) -> Tuple[str, ...]:
|
||||
if not inference:
|
||||
retval = ("speech", "text")
|
||||
else:
|
||||
# Recognition mode
|
||||
retval = ("speech",)
|
||||
return retval
|
||||
|
||||
@classmethod
|
||||
def optional_data_names(
|
||||
cls, train: bool = True, inference: bool = False
|
||||
) -> Tuple[str, ...]:
|
||||
retval = ()
|
||||
if inference:
|
||||
retval = ("ref_speech",)
|
||||
assert check_return_type(retval)
|
||||
return retval
|
||||
|
||||
@classmethod
|
||||
def build_model(cls, args: argparse.Namespace) -> ESPnetSVModel:
|
||||
assert check_argument_types()
|
||||
if isinstance(args.token_list, str):
|
||||
with open(args.token_list, encoding="utf-8") as f:
|
||||
token_list = [line.rstrip() for line in f]
|
||||
|
||||
# Overwriting token_list to keep it as "portable".
|
||||
args.token_list = list(token_list)
|
||||
elif isinstance(args.token_list, (tuple, list)):
|
||||
token_list = list(args.token_list)
|
||||
else:
|
||||
raise RuntimeError("token_list must be str or list")
|
||||
vocab_size = len(token_list)
|
||||
logging.info(f"Speaker number: {vocab_size}")
|
||||
|
||||
# 1. frontend
|
||||
if args.input_size is None:
|
||||
# Extract features in the model
|
||||
frontend_class = frontend_choices.get_class(args.frontend)
|
||||
frontend = frontend_class(**args.frontend_conf)
|
||||
input_size = frontend.output_size()
|
||||
else:
|
||||
# Give features from data-loader
|
||||
args.frontend = None
|
||||
args.frontend_conf = {}
|
||||
frontend = None
|
||||
input_size = args.input_size
|
||||
|
||||
# 2. Data augmentation for spectrogram
|
||||
if args.specaug is not None:
|
||||
specaug_class = specaug_choices.get_class(args.specaug)
|
||||
specaug = specaug_class(**args.specaug_conf)
|
||||
else:
|
||||
specaug = None
|
||||
|
||||
# 3. Normalization layer
|
||||
if args.normalize is not None:
|
||||
normalize_class = normalize_choices.get_class(args.normalize)
|
||||
normalize = normalize_class(**args.normalize_conf)
|
||||
else:
|
||||
normalize = None
|
||||
|
||||
# 4. Pre-encoder input block
|
||||
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
||||
if getattr(args, "preencoder", None) is not None:
|
||||
preencoder_class = preencoder_choices.get_class(args.preencoder)
|
||||
preencoder = preencoder_class(**args.preencoder_conf)
|
||||
input_size = preencoder.output_size()
|
||||
else:
|
||||
preencoder = None
|
||||
|
||||
# 5. Encoder
|
||||
encoder_class = encoder_choices.get_class(args.encoder)
|
||||
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
|
||||
|
||||
# 6. Post-encoder block
|
||||
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
||||
encoder_output_size = encoder.output_size()
|
||||
if getattr(args, "postencoder", None) is not None:
|
||||
postencoder_class = postencoder_choices.get_class(args.postencoder)
|
||||
postencoder = postencoder_class(
|
||||
input_size=encoder_output_size, **args.postencoder_conf
|
||||
)
|
||||
encoder_output_size = postencoder.output_size()
|
||||
else:
|
||||
postencoder = None
|
||||
|
||||
# 7. Pooling layer
|
||||
pooling_class = pooling_choices.get_class(args.pooling_type)
|
||||
pooling_dim = (2, 3)
|
||||
eps = 1e-12
|
||||
if hasattr(args, "pooling_type_conf"):
|
||||
if "pooling_dim" in args.pooling_type_conf:
|
||||
pooling_dim = args.pooling_type_conf["pooling_dim"]
|
||||
if "eps" in args.pooling_type_conf:
|
||||
eps = args.pooling_type_conf["eps"]
|
||||
pooling_layer = pooling_class(
|
||||
pooling_dim=pooling_dim,
|
||||
eps=eps,
|
||||
)
|
||||
if args.pooling_type == "statistic":
|
||||
encoder_output_size *= 2
|
||||
|
||||
# 8. Decoder
|
||||
decoder_class = decoder_choices.get_class(args.decoder)
|
||||
decoder = decoder_class(
|
||||
vocab_size=vocab_size,
|
||||
encoder_output_size=encoder_output_size,
|
||||
**args.decoder_conf,
|
||||
)
|
||||
|
||||
# 7. Build model
|
||||
try:
|
||||
model_class = model_choices.get_class(args.model)
|
||||
except AttributeError:
|
||||
model_class = model_choices.get_class("espnet")
|
||||
model = model_class(
|
||||
vocab_size=vocab_size,
|
||||
token_list=token_list,
|
||||
frontend=frontend,
|
||||
specaug=specaug,
|
||||
normalize=normalize,
|
||||
preencoder=preencoder,
|
||||
encoder=encoder,
|
||||
postencoder=postencoder,
|
||||
pooling_layer=pooling_layer,
|
||||
decoder=decoder,
|
||||
**args.model_conf,
|
||||
)
|
||||
|
||||
# FIXME(kamo): Should be done in model?
|
||||
# 8. Initialize
|
||||
if args.init is not None:
|
||||
initialize(model, args.init)
|
||||
|
||||
assert check_return_type(model)
|
||||
return model
|
||||
|
||||
# ~~~~~~~~~ The methods below are mainly used for inference ~~~~~~~~~
|
||||
@classmethod
|
||||
def build_model_from_file(
|
||||
cls,
|
||||
config_file: Union[Path, str] = None,
|
||||
model_file: Union[Path, str] = None,
|
||||
cmvn_file: Union[Path, str] = None,
|
||||
device: str = "cpu",
|
||||
):
|
||||
"""Build model from the files.
|
||||
|
||||
This method is used for inference or fine-tuning.
|
||||
|
||||
Args:
|
||||
config_file: The yaml file saved when training.
|
||||
model_file: The model file saved when training.
|
||||
cmvn_file: The cmvn file for front-end
|
||||
device: Device type, "cpu", "cuda", or "cuda:N".
|
||||
|
||||
"""
|
||||
assert check_argument_types()
|
||||
if config_file is None:
|
||||
assert model_file is not None, (
|
||||
"The argument 'model_file' must be provided "
|
||||
"if the argument 'config_file' is not specified."
|
||||
)
|
||||
config_file = Path(model_file).parent / "config.yaml"
|
||||
else:
|
||||
config_file = Path(config_file)
|
||||
|
||||
with config_file.open("r", encoding="utf-8") as f:
|
||||
args = yaml.safe_load(f)
|
||||
if cmvn_file is not None:
|
||||
args["cmvn_file"] = cmvn_file
|
||||
args = argparse.Namespace(**args)
|
||||
model = cls.build_model(args)
|
||||
if not isinstance(model, AbsESPnetModel):
|
||||
raise RuntimeError(
|
||||
f"model must inherit {AbsESPnetModel.__name__}, but got {type(model)}"
|
||||
)
|
||||
model.to(device)
|
||||
model_dict = dict()
|
||||
model_name_pth = None
|
||||
if model_file is not None:
|
||||
logging.info("model_file is {}".format(model_file))
|
||||
if device == "cuda":
|
||||
device = f"cuda:{torch.cuda.current_device()}"
|
||||
model_dir = os.path.dirname(model_file)
|
||||
model_name = os.path.basename(model_file)
|
||||
if "model.ckpt-" in model_name or ".bin" in model_name:
|
||||
if ".bin" in model_name:
|
||||
model_name_pth = os.path.join(model_dir, model_name.replace('.bin', '.pb'))
|
||||
else:
|
||||
model_name_pth = os.path.join(model_dir, "{}.pb".format(model_name))
|
||||
if os.path.exists(model_name_pth):
|
||||
logging.info("model_file is load from pth: {}".format(model_name_pth))
|
||||
model_dict = torch.load(model_name_pth, map_location=device)
|
||||
else:
|
||||
model_dict = cls.convert_tf2torch(model, model_file)
|
||||
model.load_state_dict(model_dict)
|
||||
else:
|
||||
model_dict = torch.load(model_file, map_location=device)
|
||||
model.load_state_dict(model_dict)
|
||||
if model_name_pth is not None and not os.path.exists(model_name_pth):
|
||||
torch.save(model_dict, model_name_pth)
|
||||
logging.info("model_file is saved to pth: {}".format(model_name_pth))
|
||||
|
||||
return model, args
|
||||
|
||||
@classmethod
|
||||
def convert_tf2torch(
|
||||
cls,
|
||||
model,
|
||||
ckpt,
|
||||
):
|
||||
logging.info("start convert tf model to torch model")
|
||||
from funasr_local.modules.streaming_utils.load_fr_tf import load_tf_dict
|
||||
var_dict_tf = load_tf_dict(ckpt)
|
||||
var_dict_torch = model.state_dict()
|
||||
var_dict_torch_update = dict()
|
||||
# speech encoder
|
||||
var_dict_torch_update_local = model.encoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
||||
var_dict_torch_update.update(var_dict_torch_update_local)
|
||||
# pooling layer
|
||||
var_dict_torch_update_local = model.pooling_layer.convert_tf2torch(var_dict_tf, var_dict_torch)
|
||||
var_dict_torch_update.update(var_dict_torch_update_local)
|
||||
# decoder
|
||||
var_dict_torch_update_local = model.decoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
||||
var_dict_torch_update.update(var_dict_torch_update_local)
|
||||
|
||||
return var_dict_torch_update
|
||||
Reference in New Issue
Block a user