mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
65
funasr_local/schedulers/noam_lr.py
Normal file
65
funasr_local/schedulers/noam_lr.py
Normal file
@@ -0,0 +1,65 @@
|
||||
"""Noam learning rate scheduler module."""
|
||||
from typing import Union
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import _LRScheduler
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr_local.schedulers.abs_scheduler import AbsBatchStepScheduler
|
||||
|
||||
|
||||
class NoamLR(_LRScheduler, AbsBatchStepScheduler):
|
||||
"""The LR scheduler proposed by Noam
|
||||
|
||||
Ref:
|
||||
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
|
||||
|
||||
FIXME(kamo): PyTorch doesn't provide _LRScheduler as public class,
|
||||
thus the behaviour isn't guaranteed at forward PyTorch version.
|
||||
|
||||
NOTE(kamo): The "model_size" in original implementation is derived from
|
||||
the model, but in this implementation, this parameter is a constant value.
|
||||
You need to change it if the model is changed.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
model_size: Union[int, float] = 320,
|
||||
warmup_steps: Union[int, float] = 25000,
|
||||
last_epoch: int = -1,
|
||||
):
|
||||
assert check_argument_types()
|
||||
self.model_size = model_size
|
||||
self.warmup_steps = warmup_steps
|
||||
|
||||
lr = list(optimizer.param_groups)[0]["lr"]
|
||||
new_lr = self.lr_for_WarmupLR(lr)
|
||||
warnings.warn(
|
||||
f"NoamLR is deprecated. "
|
||||
f"Use WarmupLR(warmup_steps={warmup_steps}) with Optimizer(lr={new_lr})",
|
||||
)
|
||||
|
||||
# __init__() must be invoked before setting field
|
||||
# because step() is also invoked in __init__()
|
||||
super().__init__(optimizer, last_epoch)
|
||||
|
||||
def lr_for_WarmupLR(self, lr: float) -> float:
|
||||
return lr / self.model_size**0.5 / self.warmup_steps**0.5
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self.__class__.__name__}(model_size={self.model_size}, "
|
||||
f"warmup_steps={self.warmup_steps})"
|
||||
)
|
||||
|
||||
def get_lr(self):
|
||||
step_num = self.last_epoch + 1
|
||||
return [
|
||||
lr
|
||||
* self.model_size**-0.5
|
||||
* min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
|
||||
for lr in self.base_lrs
|
||||
]
|
||||
Reference in New Issue
Block a user