add files

This commit is contained in:
烨玮
2025-02-20 12:17:03 +08:00
parent a21dd4555c
commit edd008441b
667 changed files with 473123 additions and 0 deletions

View File

View File

@@ -0,0 +1,84 @@
from abc import ABC
from abc import abstractmethod
import torch.optim.lr_scheduler as L
class AbsScheduler(ABC):
@abstractmethod
def step(self, epoch: int = None):
pass
@abstractmethod
def state_dict(self):
pass
@abstractmethod
def load_state_dict(self, state):
pass
# If you need to define custom scheduler, please inherit these classes
class AbsBatchStepScheduler(AbsScheduler):
@abstractmethod
def step(self, epoch: int = None):
pass
@abstractmethod
def state_dict(self):
pass
@abstractmethod
def load_state_dict(self, state):
pass
class AbsEpochStepScheduler(AbsScheduler):
@abstractmethod
def step(self, epoch: int = None):
pass
@abstractmethod
def state_dict(self):
pass
@abstractmethod
def load_state_dict(self, state):
pass
class AbsValEpochStepScheduler(AbsEpochStepScheduler):
@abstractmethod
def step(self, val, epoch: int = None):
pass
@abstractmethod
def state_dict(self):
pass
@abstractmethod
def load_state_dict(self, state):
pass
# Create alias type to check the type
# Note(kamo): Currently PyTorch doesn't provide the base class
# to judge these classes.
AbsValEpochStepScheduler.register(L.ReduceLROnPlateau)
for s in [
L.ReduceLROnPlateau,
L.LambdaLR,
L.StepLR,
L.MultiStepLR,
L.MultiStepLR,
L.ExponentialLR,
L.CosineAnnealingLR,
]:
AbsEpochStepScheduler.register(s)
AbsBatchStepScheduler.register(L.CyclicLR)
for s in [
L.OneCycleLR,
L.CosineAnnealingWarmRestarts,
]:
AbsBatchStepScheduler.register(s)

View File

@@ -0,0 +1,65 @@
"""Noam learning rate scheduler module."""
from typing import Union
import warnings
import torch
from torch.optim.lr_scheduler import _LRScheduler
from typeguard import check_argument_types
from funasr_local.schedulers.abs_scheduler import AbsBatchStepScheduler
class NoamLR(_LRScheduler, AbsBatchStepScheduler):
"""The LR scheduler proposed by Noam
Ref:
"Attention Is All You Need", https://arxiv.org/pdf/1706.03762.pdf
FIXME(kamo): PyTorch doesn't provide _LRScheduler as public class,
thus the behaviour isn't guaranteed at forward PyTorch version.
NOTE(kamo): The "model_size" in original implementation is derived from
the model, but in this implementation, this parameter is a constant value.
You need to change it if the model is changed.
"""
def __init__(
self,
optimizer: torch.optim.Optimizer,
model_size: Union[int, float] = 320,
warmup_steps: Union[int, float] = 25000,
last_epoch: int = -1,
):
assert check_argument_types()
self.model_size = model_size
self.warmup_steps = warmup_steps
lr = list(optimizer.param_groups)[0]["lr"]
new_lr = self.lr_for_WarmupLR(lr)
warnings.warn(
f"NoamLR is deprecated. "
f"Use WarmupLR(warmup_steps={warmup_steps}) with Optimizer(lr={new_lr})",
)
# __init__() must be invoked before setting field
# because step() is also invoked in __init__()
super().__init__(optimizer, last_epoch)
def lr_for_WarmupLR(self, lr: float) -> float:
return lr / self.model_size**0.5 / self.warmup_steps**0.5
def __repr__(self):
return (
f"{self.__class__.__name__}(model_size={self.model_size}, "
f"warmup_steps={self.warmup_steps})"
)
def get_lr(self):
step_num = self.last_epoch + 1
return [
lr
* self.model_size**-0.5
* min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
for lr in self.base_lrs
]

View File

@@ -0,0 +1,108 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Optional, List
import torch
from torch.optim.lr_scheduler import _LRScheduler
from typeguard import check_argument_types
from funasr_local.schedulers.abs_scheduler import AbsBatchStepScheduler
class TriStageLR(_LRScheduler, AbsBatchStepScheduler):
def __init__(
self,
optimizer: torch.optim.Optimizer,
last_epoch: int = -1,
phase_ratio: Optional[List[float]] = None,
init_lr_scale: float = 0.01,
final_lr_scale: float = 0.01,
):
assert check_argument_types()
self.optimizer = optimizer
self.last_epoch = last_epoch
self.phase_ratio = phase_ratio
self.init_lr_scale = init_lr_scale
self.final_lr_scale = final_lr_scale
self.optimizer_lr = self.optimizer.defaults["lr"]
def init_tri_stage_scheudler(self, max_update):
self.max_update = max_update
self.peak_lr = self.optimizer_lr
self.init_lr = self.init_lr_scale * self.optimizer_lr
self.final_lr = self.final_lr_scale * self.optimizer_lr
assert self.max_update > 0
assert sum(self.phase_ratio) == 1, "phase ratios must add up to 1"
assert len(self.phase_ratio) == 3
self.warmup_steps = int(self.max_update * self.phase_ratio[0])
self.hold_steps = int(self.max_update * self.phase_ratio[1])
self.decay_steps = int(self.max_update * self.phase_ratio[2])
self.warmup_rate = (
(self.peak_lr - self.init_lr) / self.warmup_steps
if self.warmup_steps != 0
else 0
)
self.decay_factor = -math.log(self.final_lr_scale) / self.decay_steps
# initial learning rate
self.lr = self.init_lr
# __init__() must be invoked before setting field
# because step() is also invoked in __init__()
self.set_optimizer_lr(self.lr)
super().__init__(self.optimizer, self.last_epoch)
def _decide_stage(self, update_step):
"""
return stage, and the corresponding steps within the current stage
"""
if update_step < self.warmup_steps:
# warmup state
return 0, update_step
offset = self.warmup_steps
if update_step < offset + self.hold_steps:
# hold stage
return 1, update_step - offset
offset += self.hold_steps
if update_step <= offset + self.decay_steps:
# decay stage
return 2, update_step - offset
offset += self.decay_steps
# still here ? constant lr stage
return 3, update_step - offset
def step_update(self, num_updates):
"""Update the learning rate after each update."""
stage, steps_in_stage = self._decide_stage(num_updates)
if stage == 0:
self.lr = self.init_lr + self.warmup_rate * steps_in_stage
elif stage == 1:
self.lr = self.peak_lr
elif stage == 2:
self.lr = self.peak_lr * math.exp(-self.decay_factor * steps_in_stage)
elif stage == 3:
self.lr = self.final_lr
else:
raise ValueError("Undefined stage")
self.set_optimizer_lr(self.lr)
def set_optimizer_lr(self, lr):
for param_group in self.optimizer.param_groups:
param_group["lr"] = lr
def get_lr(self):
step_num = self.last_epoch + 1
self.step_update(step_num)
return [self.lr]

View File

@@ -0,0 +1,50 @@
"""Warm up learning rate scheduler module."""
from typing import Union
import torch
from torch.optim.lr_scheduler import _LRScheduler
from typeguard import check_argument_types
from funasr_local.schedulers.abs_scheduler import AbsBatchStepScheduler
class WarmupLR(_LRScheduler, AbsBatchStepScheduler):
"""The WarmupLR scheduler
This scheduler is almost same as NoamLR Scheduler except for following difference:
NoamLR:
lr = optimizer.lr * model_size ** -0.5
* min(step ** -0.5, step * warmup_step ** -1.5)
WarmupLR:
lr = optimizer.lr * warmup_step ** 0.5
* min(step ** -0.5, step * warmup_step ** -1.5)
Note that the maximum lr equals to optimizer.lr in this scheduler.
"""
def __init__(
self,
optimizer: torch.optim.Optimizer,
warmup_steps: Union[int, float] = 25000,
last_epoch: int = -1,
):
assert check_argument_types()
self.warmup_steps = warmup_steps
# __init__() must be invoked before setting field
# because step() is also invoked in __init__()
super().__init__(optimizer, last_epoch)
def __repr__(self):
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
def get_lr(self):
step_num = self.last_epoch + 1
return [
lr
* self.warmup_steps**0.5
* min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
for lr in self.base_lrs
]