mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
91
funasr_local/samplers/unsorted_batch_sampler.py
Normal file
91
funasr_local/samplers/unsorted_batch_sampler.py
Normal file
@@ -0,0 +1,91 @@
|
||||
import logging
|
||||
from typing import Iterator
|
||||
from typing import Tuple
|
||||
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr_local.fileio.read_text import read_2column_text
|
||||
from funasr_local.samplers.abs_sampler import AbsSampler
|
||||
|
||||
|
||||
class UnsortedBatchSampler(AbsSampler):
|
||||
"""BatchSampler with constant batch-size.
|
||||
|
||||
Any sorting is not done in this class,
|
||||
so no length information is required,
|
||||
This class is convenient for decoding mode,
|
||||
or not seq2seq learning e.g. classification.
|
||||
|
||||
Args:
|
||||
batch_size:
|
||||
key_file:
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
batch_size: int,
|
||||
key_file: str,
|
||||
drop_last: bool = False,
|
||||
utt2category_file: str = None,
|
||||
):
|
||||
assert check_argument_types()
|
||||
assert batch_size > 0
|
||||
self.batch_size = batch_size
|
||||
self.key_file = key_file
|
||||
self.drop_last = drop_last
|
||||
|
||||
# utt2shape:
|
||||
# uttA <anything is o.k>
|
||||
# uttB <anything is o.k>
|
||||
utt2any = read_2column_text(key_file)
|
||||
if len(utt2any) == 0:
|
||||
logging.warning(f"{key_file} is empty")
|
||||
# In this case the, the first column in only used
|
||||
keys = list(utt2any)
|
||||
if len(keys) == 0:
|
||||
raise RuntimeError(f"0 lines found: {key_file}")
|
||||
|
||||
category2utt = {}
|
||||
if utt2category_file is not None:
|
||||
utt2category = read_2column_text(utt2category_file)
|
||||
if set(utt2category) != set(keys):
|
||||
raise RuntimeError(
|
||||
f"keys are mismatched between {utt2category_file} != {key_file}"
|
||||
)
|
||||
for k, v in utt2category.items():
|
||||
category2utt.setdefault(v, []).append(k)
|
||||
else:
|
||||
category2utt["default_category"] = keys
|
||||
|
||||
self.batch_list = []
|
||||
for d, v in category2utt.items():
|
||||
category_keys = v
|
||||
# Apply max(, 1) to avoid 0-batches
|
||||
N = max(len(category_keys) // batch_size, 1)
|
||||
if not self.drop_last:
|
||||
# Split keys evenly as possible as. Note that If N != 1,
|
||||
# the these batches always have size of batch_size at minimum.
|
||||
cur_batch_list = [
|
||||
category_keys[i * len(keys) // N : (i + 1) * len(keys) // N]
|
||||
for i in range(N)
|
||||
]
|
||||
else:
|
||||
cur_batch_list = [
|
||||
tuple(category_keys[i * batch_size : (i + 1) * batch_size])
|
||||
for i in range(N)
|
||||
]
|
||||
self.batch_list.extend(cur_batch_list)
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self.__class__.__name__}("
|
||||
f"N-batch={len(self)}, "
|
||||
f"batch_size={self.batch_size}, "
|
||||
f"key_file={self.key_file}, "
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.batch_list)
|
||||
|
||||
def __iter__(self) -> Iterator[Tuple[str, ...]]:
|
||||
return iter(self.batch_list)
|
||||
Reference in New Issue
Block a user