mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
95
funasr_local/samplers/sorted_batch_sampler.py
Normal file
95
funasr_local/samplers/sorted_batch_sampler.py
Normal file
@@ -0,0 +1,95 @@
|
||||
import logging
|
||||
from typing import Iterator
|
||||
from typing import Tuple
|
||||
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr_local.fileio.read_text import load_num_sequence_text
|
||||
from funasr_local.samplers.abs_sampler import AbsSampler
|
||||
|
||||
|
||||
class SortedBatchSampler(AbsSampler):
|
||||
"""BatchSampler with sorted samples by length.
|
||||
|
||||
Args:
|
||||
batch_size:
|
||||
shape_file:
|
||||
sort_in_batch: 'descending', 'ascending' or None.
|
||||
sort_batch:
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
batch_size: int,
|
||||
shape_file: str,
|
||||
sort_in_batch: str = "descending",
|
||||
sort_batch: str = "ascending",
|
||||
drop_last: bool = False,
|
||||
):
|
||||
assert check_argument_types()
|
||||
assert batch_size > 0
|
||||
self.batch_size = batch_size
|
||||
self.shape_file = shape_file
|
||||
self.sort_in_batch = sort_in_batch
|
||||
self.sort_batch = sort_batch
|
||||
self.drop_last = drop_last
|
||||
|
||||
# utt2shape: (Length, ...)
|
||||
# uttA 100,...
|
||||
# uttB 201,...
|
||||
utt2shape = load_num_sequence_text(shape_file, loader_type="csv_int")
|
||||
if sort_in_batch == "descending":
|
||||
# Sort samples in descending order (required by RNN)
|
||||
keys = sorted(utt2shape, key=lambda k: -utt2shape[k][0])
|
||||
elif sort_in_batch == "ascending":
|
||||
# Sort samples in ascending order
|
||||
keys = sorted(utt2shape, key=lambda k: utt2shape[k][0])
|
||||
else:
|
||||
raise ValueError(
|
||||
f"sort_in_batch must be either one of "
|
||||
f"ascending, descending, or None: {sort_in_batch}"
|
||||
)
|
||||
if len(keys) == 0:
|
||||
raise RuntimeError(f"0 lines found: {shape_file}")
|
||||
|
||||
# Apply max(, 1) to avoid 0-batches
|
||||
N = max(len(keys) // batch_size, 1)
|
||||
if not self.drop_last:
|
||||
# Split keys evenly as possible as. Note that If N != 1,
|
||||
# the these batches always have size of batch_size at minimum.
|
||||
self.batch_list = [
|
||||
keys[i * len(keys) // N : (i + 1) * len(keys) // N] for i in range(N)
|
||||
]
|
||||
else:
|
||||
self.batch_list = [
|
||||
tuple(keys[i * batch_size : (i + 1) * batch_size]) for i in range(N)
|
||||
]
|
||||
|
||||
if len(self.batch_list) == 0:
|
||||
logging.warning(f"{shape_file} is empty")
|
||||
|
||||
if sort_in_batch != sort_batch:
|
||||
if sort_batch not in ("ascending", "descending"):
|
||||
raise ValueError(
|
||||
f"sort_batch must be ascending or descending: {sort_batch}"
|
||||
)
|
||||
self.batch_list.reverse()
|
||||
|
||||
if len(self.batch_list) == 0:
|
||||
raise RuntimeError("0 batches")
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self.__class__.__name__}("
|
||||
f"N-batch={len(self)}, "
|
||||
f"batch_size={self.batch_size}, "
|
||||
f"shape_file={self.shape_file}, "
|
||||
f"sort_in_batch={self.sort_in_batch}, "
|
||||
f"sort_batch={self.sort_batch})"
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.batch_list)
|
||||
|
||||
def __iter__(self) -> Iterator[Tuple[str, ...]]:
|
||||
return iter(self.batch_list)
|
||||
Reference in New Issue
Block a user