mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
541
funasr_local/runtime/triton_gpu/client/decode_manifest_triton.py
Normal file
541
funasr_local/runtime/triton_gpu/client/decode_manifest_triton.py
Normal file
@@ -0,0 +1,541 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
# 2023 Nvidia (authors: Yuekai Zhang)
|
||||
# See LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This script loads a manifest in lhotse format and sends it to the server
|
||||
for decoding, in parallel.
|
||||
|
||||
Usage:
|
||||
# For offline wenet server
|
||||
./decode_manifest_triton.py \
|
||||
--server-addr localhost \
|
||||
--compute-cer \
|
||||
--model-name attention_rescoring \
|
||||
--num-tasks 300 \
|
||||
--manifest-filename ./aishell-test-dev-manifests/data/fbank/aishell_cuts_test.jsonl.gz # noqa
|
||||
|
||||
# For streaming wenet server
|
||||
./decode_manifest_triton.py \
|
||||
--server-addr localhost \
|
||||
--streaming \
|
||||
--compute-cer \
|
||||
--context 7 \
|
||||
--model-name streaming_wenet \
|
||||
--num-tasks 300 \
|
||||
--manifest-filename ./aishell-test-dev-manifests/data/fbank/aishell_cuts_test.jsonl.gz # noqa
|
||||
|
||||
# For simulate streaming mode wenet server
|
||||
./decode_manifest_triton.py \
|
||||
--server-addr localhost \
|
||||
--simulate-streaming \
|
||||
--compute-cer \
|
||||
--context 7 \
|
||||
--model-name streaming_wenet \
|
||||
--num-tasks 300 \
|
||||
--manifest-filename ./aishell-test-dev-manifests/data/fbank/aishell_cuts_test.jsonl.gz # noqa
|
||||
|
||||
# For test container:
|
||||
docker run -it --rm --name "wenet_client_test" --net host --gpus all soar97/triton-k2:22.12.1 # noqa
|
||||
|
||||
# For aishell manifests:
|
||||
apt-get install git-lfs
|
||||
git-lfs install
|
||||
git clone https://huggingface.co/csukuangfj/aishell-test-dev-manifests
|
||||
sudo mkdir -p /root/fangjun/open-source/icefall-aishell/egs/aishell/ASR/download/aishell
|
||||
tar xf ./aishell-test-dev-manifests/data_aishell.tar.gz -C /root/fangjun/open-source/icefall-aishell/egs/aishell/ASR/download/aishell/ # noqa
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import math
|
||||
import time
|
||||
import types
|
||||
from pathlib import Path
|
||||
import json
|
||||
import numpy as np
|
||||
import tritonclient
|
||||
import tritonclient.grpc.aio as grpcclient
|
||||
from lhotse import CutSet, load_manifest
|
||||
from tritonclient.utils import np_to_triton_dtype
|
||||
|
||||
from icefall.utils import store_transcripts, write_error_stats
|
||||
|
||||
DEFAULT_MANIFEST_FILENAME = "/mnt/samsung-t7/yuekai/aishell-test-dev-manifests/data/fbank/aishell_cuts_test.jsonl.gz" # noqa
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--server-addr",
|
||||
type=str,
|
||||
default="localhost",
|
||||
help="Address of the server",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--server-port",
|
||||
type=int,
|
||||
default=8001,
|
||||
help="Port of the server",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--manifest-filename",
|
||||
type=str,
|
||||
default=DEFAULT_MANIFEST_FILENAME,
|
||||
help="Path to the manifest for decoding",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default="transducer",
|
||||
help="triton model_repo module name to request",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-tasks",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Number of tasks to use for sending",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--log-interval",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Controls how frequently we print the log.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--compute-cer",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="""True to compute CER, e.g., for Chinese.
|
||||
False to compute WER, e.g., for English words.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--streaming",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="""True for streaming ASR.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--simulate-streaming",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="""True for strictly simulate streaming ASR.
|
||||
Threads will sleep to simulate the real speaking scene.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--chunk_size",
|
||||
type=int,
|
||||
required=False,
|
||||
default=16,
|
||||
help="chunk size default is 16",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context",
|
||||
type=int,
|
||||
required=False,
|
||||
default=-1,
|
||||
help="subsampling context for wenet",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder_right_context",
|
||||
type=int,
|
||||
required=False,
|
||||
default=2,
|
||||
help="encoder right context",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--subsampling",
|
||||
type=int,
|
||||
required=False,
|
||||
default=4,
|
||||
help="subsampling rate",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--stats_file",
|
||||
type=str,
|
||||
required=False,
|
||||
default="./stats.json",
|
||||
help="output of stats anaylasis",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
async def send(
|
||||
cuts: CutSet,
|
||||
name: str,
|
||||
triton_client: tritonclient.grpc.aio.InferenceServerClient,
|
||||
protocol_client: types.ModuleType,
|
||||
log_interval: int,
|
||||
compute_cer: bool,
|
||||
model_name: str,
|
||||
):
|
||||
total_duration = 0.0
|
||||
results = []
|
||||
|
||||
for i, c in enumerate(cuts):
|
||||
if i % log_interval == 0:
|
||||
print(f"{name}: {i}/{len(cuts)}")
|
||||
|
||||
waveform = c.load_audio().reshape(-1).astype(np.float32)
|
||||
sample_rate = 16000
|
||||
|
||||
# padding to nearset 10 seconds
|
||||
samples = np.zeros(
|
||||
(
|
||||
1,
|
||||
10 * sample_rate * (int(len(waveform) / sample_rate // 10) + 1),
|
||||
),
|
||||
dtype=np.float32,
|
||||
)
|
||||
samples[0, : len(waveform)] = waveform
|
||||
|
||||
lengths = np.array([[len(waveform)]], dtype=np.int32)
|
||||
|
||||
inputs = [
|
||||
protocol_client.InferInput(
|
||||
"WAV", samples.shape, np_to_triton_dtype(samples.dtype)
|
||||
),
|
||||
protocol_client.InferInput(
|
||||
"WAV_LENS", lengths.shape, np_to_triton_dtype(lengths.dtype)
|
||||
),
|
||||
]
|
||||
inputs[0].set_data_from_numpy(samples)
|
||||
inputs[1].set_data_from_numpy(lengths)
|
||||
outputs = [protocol_client.InferRequestedOutput("TRANSCRIPTS")]
|
||||
sequence_id = 10086 + i
|
||||
|
||||
response = await triton_client.infer(
|
||||
model_name, inputs, request_id=str(sequence_id), outputs=outputs
|
||||
)
|
||||
|
||||
decoding_results = response.as_numpy("TRANSCRIPTS")[0]
|
||||
if type(decoding_results) == np.ndarray:
|
||||
decoding_results = b" ".join(decoding_results).decode("utf-8")
|
||||
else:
|
||||
# For wenet
|
||||
decoding_results = decoding_results.decode("utf-8")
|
||||
|
||||
total_duration += c.duration
|
||||
|
||||
if compute_cer:
|
||||
ref = c.supervisions[0].text.split()
|
||||
hyp = decoding_results.split()
|
||||
ref = list("".join(ref))
|
||||
hyp = list("".join(hyp))
|
||||
results.append((c.id, ref, hyp))
|
||||
else:
|
||||
results.append(
|
||||
(
|
||||
c.id,
|
||||
c.supervisions[0].text.split(),
|
||||
decoding_results.split(),
|
||||
)
|
||||
) # noqa
|
||||
|
||||
return total_duration, results
|
||||
|
||||
|
||||
async def send_streaming(
|
||||
cuts: CutSet,
|
||||
name: str,
|
||||
triton_client: tritonclient.grpc.aio.InferenceServerClient,
|
||||
protocol_client: types.ModuleType,
|
||||
log_interval: int,
|
||||
compute_cer: bool,
|
||||
model_name: str,
|
||||
first_chunk_in_secs: float,
|
||||
other_chunk_in_secs: float,
|
||||
task_index: int,
|
||||
simulate_mode: bool = False,
|
||||
):
|
||||
total_duration = 0.0
|
||||
results = []
|
||||
latency_data = []
|
||||
|
||||
for i, c in enumerate(cuts):
|
||||
if i % log_interval == 0:
|
||||
print(f"{name}: {i}/{len(cuts)}")
|
||||
|
||||
waveform = c.load_audio().reshape(-1).astype(np.float32)
|
||||
sample_rate = 16000
|
||||
|
||||
wav_segs = []
|
||||
|
||||
j = 0
|
||||
while j < len(waveform):
|
||||
if j == 0:
|
||||
stride = int(first_chunk_in_secs * sample_rate)
|
||||
wav_segs.append(waveform[j : j + stride])
|
||||
else:
|
||||
stride = int(other_chunk_in_secs * sample_rate)
|
||||
wav_segs.append(waveform[j : j + stride])
|
||||
j += len(wav_segs[-1])
|
||||
|
||||
sequence_id = task_index + 10086
|
||||
|
||||
for idx, seg in enumerate(wav_segs):
|
||||
chunk_len = len(seg)
|
||||
|
||||
if simulate_mode:
|
||||
await asyncio.sleep(chunk_len / sample_rate)
|
||||
|
||||
chunk_start = time.time()
|
||||
if idx == 0:
|
||||
chunk_samples = int(first_chunk_in_secs * sample_rate)
|
||||
expect_input = np.zeros((1, chunk_samples), dtype=np.float32)
|
||||
else:
|
||||
chunk_samples = int(other_chunk_in_secs * sample_rate)
|
||||
expect_input = np.zeros((1, chunk_samples), dtype=np.float32)
|
||||
|
||||
expect_input[0][0:chunk_len] = seg
|
||||
input0_data = expect_input
|
||||
input1_data = np.array([[chunk_len]], dtype=np.int32)
|
||||
|
||||
inputs = [
|
||||
protocol_client.InferInput(
|
||||
"WAV",
|
||||
input0_data.shape,
|
||||
np_to_triton_dtype(input0_data.dtype),
|
||||
),
|
||||
protocol_client.InferInput(
|
||||
"WAV_LENS",
|
||||
input1_data.shape,
|
||||
np_to_triton_dtype(input1_data.dtype),
|
||||
),
|
||||
]
|
||||
|
||||
inputs[0].set_data_from_numpy(input0_data)
|
||||
inputs[1].set_data_from_numpy(input1_data)
|
||||
|
||||
outputs = [protocol_client.InferRequestedOutput("TRANSCRIPTS")]
|
||||
end = False
|
||||
if idx == len(wav_segs) - 1:
|
||||
end = True
|
||||
|
||||
response = await triton_client.infer(
|
||||
model_name,
|
||||
inputs,
|
||||
outputs=outputs,
|
||||
sequence_id=sequence_id,
|
||||
sequence_start=idx == 0,
|
||||
sequence_end=end,
|
||||
)
|
||||
idx += 1
|
||||
|
||||
decoding_results = response.as_numpy("TRANSCRIPTS")
|
||||
if type(decoding_results) == np.ndarray:
|
||||
decoding_results = b" ".join(decoding_results).decode("utf-8")
|
||||
else:
|
||||
# For wenet
|
||||
decoding_results = response.as_numpy("TRANSCRIPTS")[0].decode(
|
||||
"utf-8"
|
||||
)
|
||||
chunk_end = time.time() - chunk_start
|
||||
latency_data.append((chunk_end, chunk_len / sample_rate))
|
||||
|
||||
total_duration += c.duration
|
||||
|
||||
if compute_cer:
|
||||
ref = c.supervisions[0].text.split()
|
||||
hyp = decoding_results.split()
|
||||
ref = list("".join(ref))
|
||||
hyp = list("".join(hyp))
|
||||
results.append((c.id, ref, hyp))
|
||||
else:
|
||||
results.append(
|
||||
(
|
||||
c.id,
|
||||
c.supervisions[0].text.split(),
|
||||
decoding_results.split(),
|
||||
)
|
||||
) # noqa
|
||||
|
||||
return total_duration, results, latency_data
|
||||
|
||||
|
||||
async def main():
|
||||
args = get_args()
|
||||
filename = args.manifest_filename
|
||||
server_addr = args.server_addr
|
||||
server_port = args.server_port
|
||||
url = f"{server_addr}:{server_port}"
|
||||
num_tasks = args.num_tasks
|
||||
log_interval = args.log_interval
|
||||
compute_cer = args.compute_cer
|
||||
|
||||
cuts = load_manifest(filename)
|
||||
cuts_list = cuts.split(num_tasks)
|
||||
tasks = []
|
||||
|
||||
triton_client = grpcclient.InferenceServerClient(url=url, verbose=False)
|
||||
protocol_client = grpcclient
|
||||
|
||||
if args.streaming or args.simulate_streaming:
|
||||
frame_shift_ms = 10
|
||||
frame_length_ms = 25
|
||||
add_frames = math.ceil(
|
||||
(frame_length_ms - frame_shift_ms) / frame_shift_ms
|
||||
)
|
||||
# decode_window_length: input sequence length of streaming encoder
|
||||
if args.context > 0:
|
||||
# decode window length calculation for wenet
|
||||
decode_window_length = (
|
||||
args.chunk_size - 1
|
||||
) * args.subsampling + args.context
|
||||
else:
|
||||
# decode window length calculation for icefall
|
||||
decode_window_length = (
|
||||
args.chunk_size + 2 + args.encoder_right_context
|
||||
) * args.subsampling + 3
|
||||
|
||||
first_chunk_ms = (decode_window_length + add_frames) * frame_shift_ms
|
||||
|
||||
start_time = time.time()
|
||||
for i in range(num_tasks):
|
||||
if args.streaming:
|
||||
assert not args.simulate_streaming
|
||||
task = asyncio.create_task(
|
||||
send_streaming(
|
||||
cuts=cuts_list[i],
|
||||
name=f"task-{i}",
|
||||
triton_client=triton_client,
|
||||
protocol_client=protocol_client,
|
||||
log_interval=log_interval,
|
||||
compute_cer=compute_cer,
|
||||
model_name=args.model_name,
|
||||
first_chunk_in_secs=first_chunk_ms / 1000,
|
||||
other_chunk_in_secs=args.chunk_size
|
||||
* args.subsampling
|
||||
* frame_shift_ms
|
||||
/ 1000,
|
||||
task_index=i,
|
||||
)
|
||||
)
|
||||
elif args.simulate_streaming:
|
||||
task = asyncio.create_task(
|
||||
send_streaming(
|
||||
cuts=cuts_list[i],
|
||||
name=f"task-{i}",
|
||||
triton_client=triton_client,
|
||||
protocol_client=protocol_client,
|
||||
log_interval=log_interval,
|
||||
compute_cer=compute_cer,
|
||||
model_name=args.model_name,
|
||||
first_chunk_in_secs=first_chunk_ms / 1000,
|
||||
other_chunk_in_secs=args.chunk_size
|
||||
* args.subsampling
|
||||
* frame_shift_ms
|
||||
/ 1000,
|
||||
task_index=i,
|
||||
simulate_mode=True,
|
||||
)
|
||||
)
|
||||
else:
|
||||
task = asyncio.create_task(
|
||||
send(
|
||||
cuts=cuts_list[i],
|
||||
name=f"task-{i}",
|
||||
triton_client=triton_client,
|
||||
protocol_client=protocol_client,
|
||||
log_interval=log_interval,
|
||||
compute_cer=compute_cer,
|
||||
model_name=args.model_name,
|
||||
)
|
||||
)
|
||||
tasks.append(task)
|
||||
|
||||
ans_list = await asyncio.gather(*tasks)
|
||||
|
||||
end_time = time.time()
|
||||
elapsed = end_time - start_time
|
||||
|
||||
results = []
|
||||
total_duration = 0.0
|
||||
latency_data = []
|
||||
for ans in ans_list:
|
||||
total_duration += ans[0]
|
||||
results += ans[1]
|
||||
if args.streaming or args.simulate_streaming:
|
||||
latency_data += ans[2]
|
||||
|
||||
rtf = elapsed / total_duration
|
||||
|
||||
s = f"RTF: {rtf:.4f}\n"
|
||||
s += f"total_duration: {total_duration:.3f} seconds\n"
|
||||
s += f"({total_duration/3600:.2f} hours)\n"
|
||||
s += (
|
||||
f"processing time: {elapsed:.3f} seconds "
|
||||
f"({elapsed/3600:.2f} hours)\n"
|
||||
)
|
||||
|
||||
if args.streaming or args.simulate_streaming:
|
||||
latency_list = [
|
||||
chunk_end for (chunk_end, chunk_duration) in latency_data
|
||||
]
|
||||
latency_ms = sum(latency_list) / float(len(latency_list)) * 1000.0
|
||||
latency_variance = np.var(latency_list, dtype=np.float64) * 1000.0
|
||||
s += f"latency_variance: {latency_variance:.2f}\n"
|
||||
s += f"latency_50_percentile: {np.percentile(latency_list, 50) * 1000.0:.2f}\n"
|
||||
s += f"latency_90_percentile: {np.percentile(latency_list, 90) * 1000.0:.2f}\n"
|
||||
s += f"latency_99_percentile: {np.percentile(latency_list, 99) * 1000.0:.2f}\n"
|
||||
s += f"average_latency_ms: {latency_ms:.2f}\n"
|
||||
|
||||
print(s)
|
||||
|
||||
with open("rtf.txt", "w") as f:
|
||||
f.write(s)
|
||||
|
||||
name = Path(filename).stem.split(".")[0]
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=f"recogs-{name}.txt", texts=results)
|
||||
|
||||
with open(f"errs-{name}.txt", "w") as f:
|
||||
write_error_stats(f, "test-set", results, enable_log=True)
|
||||
|
||||
with open(f"errs-{name}.txt", "r") as f:
|
||||
print(f.readline()) # WER
|
||||
print(f.readline()) # Detailed errors
|
||||
|
||||
if args.stats_file:
|
||||
stats = await triton_client.get_inference_statistics(
|
||||
model_name="", as_json=True
|
||||
)
|
||||
with open(args.stats_file, "w") as f:
|
||||
json.dump(stats, f)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
Reference in New Issue
Block a user