mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
19
funasr_local/runtime/triton_gpu/Dockerfile/Dockerfile.server
Normal file
19
funasr_local/runtime/triton_gpu/Dockerfile/Dockerfile.server
Normal file
@@ -0,0 +1,19 @@
|
||||
FROM nvcr.io/nvidia/tritonserver:23.01-py3
|
||||
# https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html
|
||||
# Please choose previous tritonserver:xx.xx if you encounter cuda driver mismatch issue
|
||||
|
||||
LABEL maintainer="NVIDIA"
|
||||
LABEL repository="tritonserver"
|
||||
|
||||
RUN apt-get update && apt-get -y install \
|
||||
python3-dev \
|
||||
cmake \
|
||||
libsndfile1
|
||||
|
||||
# -i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||
RUN pip3 install torch torchaudio
|
||||
RUN pip3 install kaldifeat pyyaml
|
||||
|
||||
# Dependency for client
|
||||
RUN pip3 install soundfile grpcio-tools tritonclient
|
||||
WORKDIR /workspace
|
||||
85
funasr_local/runtime/triton_gpu/README.md
Normal file
85
funasr_local/runtime/triton_gpu/README.md
Normal file
@@ -0,0 +1,85 @@
|
||||
## Inference with Triton
|
||||
|
||||
### Steps:
|
||||
1. Prepare model repo files
|
||||
```sh
|
||||
git-lfs install
|
||||
git clone https://www.modelscope.cn/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git
|
||||
|
||||
pretrained_model_dir=$(pwd)/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch
|
||||
|
||||
cp $pretrained_model_dir/am.mvn ./model_repo_paraformer_large_offline/feature_extractor/
|
||||
cp $pretrained_model_dir/config.yaml ./model_repo_paraformer_large_offline/feature_extractor/
|
||||
|
||||
# Refer here to get model.onnx (https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/export/README.md)
|
||||
cp <exported_onnx_dir>/model.onnx ./model_repo_paraformer_large_offline/encoder/1/
|
||||
```
|
||||
Log of directory tree:
|
||||
```sh
|
||||
model_repo_paraformer_large_offline/
|
||||
|-- encoder
|
||||
| |-- 1
|
||||
| | `-- model.onnx
|
||||
| `-- config.pbtxt
|
||||
|-- feature_extractor
|
||||
| |-- 1
|
||||
| | `-- model.py
|
||||
| |-- config.pbtxt
|
||||
| |-- am.mvn
|
||||
| `-- config.yaml
|
||||
|-- infer_pipeline
|
||||
| |-- 1
|
||||
| `-- config.pbtxt
|
||||
`-- scoring
|
||||
|-- 1
|
||||
| `-- model.py
|
||||
`-- config.pbtxt
|
||||
|
||||
8 directories, 9 files
|
||||
```
|
||||
|
||||
2. Follow below instructions to launch triton server
|
||||
```sh
|
||||
# using docker image Dockerfile/Dockerfile.server
|
||||
docker build . -f Dockerfile/Dockerfile.server -t triton-paraformer:23.01
|
||||
docker run -it --rm --name "paraformer_triton_server" --gpus all -v <path_host/model_repo_paraformer_large_offline>:/workspace/ --shm-size 1g --net host triton-paraformer:23.01
|
||||
|
||||
# launch the service
|
||||
tritonserver --model-repository /workspace/model_repo_paraformer_large_offline \
|
||||
--pinned-memory-pool-byte-size=512000000 \
|
||||
--cuda-memory-pool-byte-size=0:1024000000
|
||||
|
||||
```
|
||||
|
||||
### Performance benchmark
|
||||
|
||||
Benchmark [speech_paraformer](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) based on Aishell1 test set with a single V100, the total audio duration is 36108.919 seconds.
|
||||
|
||||
```sh
|
||||
# For client container:
|
||||
docker run -it --rm --name "client_test" --net host --gpus all -v <path_host/triton_gpu/client>:/workpace/ soar97/triton-k2:22.12.1 # noqa
|
||||
# For aishell manifests:
|
||||
apt-get install git-lfs
|
||||
git-lfs install
|
||||
git clone https://huggingface.co/csukuangfj/aishell-test-dev-manifests
|
||||
sudo mkdir -p /root/fangjun/open-source/icefall-aishell/egs/aishell/ASR/download/aishell
|
||||
tar xf ./aishell-test-dev-manifests/data_aishell.tar.gz -C /root/fangjun/open-source/icefall-aishell/egs/aishell/ASR/download/aishell/ # noqa
|
||||
|
||||
serveraddr=localhost
|
||||
manifest_path=/workspace/aishell-test-dev-manifests/data/fbank/aishell_cuts_test.jsonl.gz
|
||||
num_task=60
|
||||
python3 client/decode_manifest_triton.py \
|
||||
--server-addr $serveraddr \
|
||||
--compute-cer \
|
||||
--model-name infer_pipeline \
|
||||
--num-tasks $num_task \
|
||||
--manifest-filename $manifest_path
|
||||
```
|
||||
|
||||
(Note: The service has been fully warm up.)
|
||||
|concurrent-tasks | processing time(s) | RTF |
|
||||
|----------|--------------------|------------|
|
||||
| 60 (onnx fp32) | 116.0 | 0.0032|
|
||||
|
||||
## Acknowledge
|
||||
This part originates from NVIDIA CISI project. We also have TTS and NLP solutions deployed on triton inference server. If you are interested, please contact us.
|
||||
7176
funasr_local/runtime/triton_gpu/client/aishell_test.txt
Normal file
7176
funasr_local/runtime/triton_gpu/client/aishell_test.txt
Normal file
File diff suppressed because it is too large
Load Diff
191
funasr_local/runtime/triton_gpu/client/client.py
Normal file
191
funasr_local/runtime/triton_gpu/client/client.py
Normal file
@@ -0,0 +1,191 @@
|
||||
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import multiprocessing
|
||||
from multiprocessing import Pool
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import tritonclient.grpc as grpcclient
|
||||
from utils import cal_cer
|
||||
from speech_client import *
|
||||
import numpy as np
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-v",
|
||||
"--verbose",
|
||||
action="store_true",
|
||||
required=False,
|
||||
default=False,
|
||||
help="Enable verbose output",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-u",
|
||||
"--url",
|
||||
type=str,
|
||||
required=False,
|
||||
default="localhost:10086",
|
||||
help="Inference server URL. Default is " "localhost:8001.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_name",
|
||||
required=False,
|
||||
default="attention_rescoring",
|
||||
choices=["attention_rescoring", "streaming_wenet", "infer_pipeline"],
|
||||
help="the model to send request to",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--wavscp",
|
||||
type=str,
|
||||
required=False,
|
||||
default=None,
|
||||
help="audio_id \t wav_path",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--trans",
|
||||
type=str,
|
||||
required=False,
|
||||
default=None,
|
||||
help="audio_id \t text",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--data_dir",
|
||||
type=str,
|
||||
required=False,
|
||||
default=None,
|
||||
help="path prefix for wav_path in wavscp/audio_file",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--audio_file",
|
||||
type=str,
|
||||
required=False,
|
||||
default=None,
|
||||
help="single wav file path",
|
||||
)
|
||||
# below arguments are for streaming
|
||||
# Please check onnx_config.yaml and train.yaml
|
||||
parser.add_argument("--streaming", action="store_true", required=False)
|
||||
parser.add_argument(
|
||||
"--sample_rate",
|
||||
type=int,
|
||||
required=False,
|
||||
default=16000,
|
||||
help="sample rate used in training",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--frame_length_ms",
|
||||
type=int,
|
||||
required=False,
|
||||
default=25,
|
||||
help="frame length",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--frame_shift_ms",
|
||||
type=int,
|
||||
required=False,
|
||||
default=10,
|
||||
help="frame shift length",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--chunk_size",
|
||||
type=int,
|
||||
required=False,
|
||||
default=16,
|
||||
help="chunk size default is 16",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--context",
|
||||
type=int,
|
||||
required=False,
|
||||
default=7,
|
||||
help="subsampling context",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--subsampling",
|
||||
type=int,
|
||||
required=False,
|
||||
default=4,
|
||||
help="subsampling rate",
|
||||
)
|
||||
|
||||
FLAGS = parser.parse_args()
|
||||
print(FLAGS)
|
||||
|
||||
# load data
|
||||
filenames = []
|
||||
transcripts = []
|
||||
if FLAGS.audio_file is not None:
|
||||
path = FLAGS.audio_file
|
||||
if FLAGS.data_dir:
|
||||
path = os.path.join(FLAGS.data_dir, path)
|
||||
if os.path.exists(path):
|
||||
filenames = [path]
|
||||
elif FLAGS.wavscp is not None:
|
||||
audio_data = {}
|
||||
with open(FLAGS.wavscp, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
aid, path = line.strip().split("\t")
|
||||
if FLAGS.data_dir:
|
||||
path = os.path.join(FLAGS.data_dir, path)
|
||||
audio_data[aid] = {"path": path}
|
||||
with open(FLAGS.trans, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
aid, text = line.strip().split("\t")
|
||||
audio_data[aid]["text"] = text
|
||||
for key, value in audio_data.items():
|
||||
filenames.append(value["path"])
|
||||
transcripts.append(value["text"])
|
||||
|
||||
num_workers = multiprocessing.cpu_count() // 2
|
||||
|
||||
if FLAGS.streaming:
|
||||
speech_client_cls = StreamingSpeechClient
|
||||
else:
|
||||
speech_client_cls = OfflineSpeechClient
|
||||
|
||||
def single_job(client_files):
|
||||
with grpcclient.InferenceServerClient(
|
||||
url=FLAGS.url, verbose=FLAGS.verbose
|
||||
) as triton_client:
|
||||
protocol_client = grpcclient
|
||||
speech_client = speech_client_cls(
|
||||
triton_client, FLAGS.model_name, protocol_client, FLAGS
|
||||
)
|
||||
idx, audio_files = client_files
|
||||
predictions = []
|
||||
for li in audio_files:
|
||||
result = speech_client.recognize(li, idx)
|
||||
print("Recognized {}:{}".format(li, result[0]))
|
||||
predictions += result
|
||||
return predictions
|
||||
|
||||
# start to do inference
|
||||
# Group requests in batches
|
||||
predictions = []
|
||||
tasks = []
|
||||
splits = np.array_split(filenames, num_workers)
|
||||
|
||||
for idx, per_split in enumerate(splits):
|
||||
cur_files = per_split.tolist()
|
||||
tasks.append((idx, cur_files))
|
||||
|
||||
with Pool(processes=num_workers) as pool:
|
||||
predictions = pool.map(single_job, tasks)
|
||||
|
||||
predictions = [item for sublist in predictions for item in sublist]
|
||||
if transcripts:
|
||||
cer = cal_cer(predictions, transcripts)
|
||||
print("CER is: {}".format(cer))
|
||||
541
funasr_local/runtime/triton_gpu/client/decode_manifest_triton.py
Normal file
541
funasr_local/runtime/triton_gpu/client/decode_manifest_triton.py
Normal file
@@ -0,0 +1,541 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
# 2023 Nvidia (authors: Yuekai Zhang)
|
||||
# See LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This script loads a manifest in lhotse format and sends it to the server
|
||||
for decoding, in parallel.
|
||||
|
||||
Usage:
|
||||
# For offline wenet server
|
||||
./decode_manifest_triton.py \
|
||||
--server-addr localhost \
|
||||
--compute-cer \
|
||||
--model-name attention_rescoring \
|
||||
--num-tasks 300 \
|
||||
--manifest-filename ./aishell-test-dev-manifests/data/fbank/aishell_cuts_test.jsonl.gz # noqa
|
||||
|
||||
# For streaming wenet server
|
||||
./decode_manifest_triton.py \
|
||||
--server-addr localhost \
|
||||
--streaming \
|
||||
--compute-cer \
|
||||
--context 7 \
|
||||
--model-name streaming_wenet \
|
||||
--num-tasks 300 \
|
||||
--manifest-filename ./aishell-test-dev-manifests/data/fbank/aishell_cuts_test.jsonl.gz # noqa
|
||||
|
||||
# For simulate streaming mode wenet server
|
||||
./decode_manifest_triton.py \
|
||||
--server-addr localhost \
|
||||
--simulate-streaming \
|
||||
--compute-cer \
|
||||
--context 7 \
|
||||
--model-name streaming_wenet \
|
||||
--num-tasks 300 \
|
||||
--manifest-filename ./aishell-test-dev-manifests/data/fbank/aishell_cuts_test.jsonl.gz # noqa
|
||||
|
||||
# For test container:
|
||||
docker run -it --rm --name "wenet_client_test" --net host --gpus all soar97/triton-k2:22.12.1 # noqa
|
||||
|
||||
# For aishell manifests:
|
||||
apt-get install git-lfs
|
||||
git-lfs install
|
||||
git clone https://huggingface.co/csukuangfj/aishell-test-dev-manifests
|
||||
sudo mkdir -p /root/fangjun/open-source/icefall-aishell/egs/aishell/ASR/download/aishell
|
||||
tar xf ./aishell-test-dev-manifests/data_aishell.tar.gz -C /root/fangjun/open-source/icefall-aishell/egs/aishell/ASR/download/aishell/ # noqa
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import math
|
||||
import time
|
||||
import types
|
||||
from pathlib import Path
|
||||
import json
|
||||
import numpy as np
|
||||
import tritonclient
|
||||
import tritonclient.grpc.aio as grpcclient
|
||||
from lhotse import CutSet, load_manifest
|
||||
from tritonclient.utils import np_to_triton_dtype
|
||||
|
||||
from icefall.utils import store_transcripts, write_error_stats
|
||||
|
||||
DEFAULT_MANIFEST_FILENAME = "/mnt/samsung-t7/yuekai/aishell-test-dev-manifests/data/fbank/aishell_cuts_test.jsonl.gz" # noqa
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--server-addr",
|
||||
type=str,
|
||||
default="localhost",
|
||||
help="Address of the server",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--server-port",
|
||||
type=int,
|
||||
default=8001,
|
||||
help="Port of the server",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--manifest-filename",
|
||||
type=str,
|
||||
default=DEFAULT_MANIFEST_FILENAME,
|
||||
help="Path to the manifest for decoding",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default="transducer",
|
||||
help="triton model_repo module name to request",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-tasks",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Number of tasks to use for sending",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--log-interval",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Controls how frequently we print the log.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--compute-cer",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="""True to compute CER, e.g., for Chinese.
|
||||
False to compute WER, e.g., for English words.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--streaming",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="""True for streaming ASR.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--simulate-streaming",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="""True for strictly simulate streaming ASR.
|
||||
Threads will sleep to simulate the real speaking scene.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--chunk_size",
|
||||
type=int,
|
||||
required=False,
|
||||
default=16,
|
||||
help="chunk size default is 16",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context",
|
||||
type=int,
|
||||
required=False,
|
||||
default=-1,
|
||||
help="subsampling context for wenet",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder_right_context",
|
||||
type=int,
|
||||
required=False,
|
||||
default=2,
|
||||
help="encoder right context",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--subsampling",
|
||||
type=int,
|
||||
required=False,
|
||||
default=4,
|
||||
help="subsampling rate",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--stats_file",
|
||||
type=str,
|
||||
required=False,
|
||||
default="./stats.json",
|
||||
help="output of stats anaylasis",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
async def send(
|
||||
cuts: CutSet,
|
||||
name: str,
|
||||
triton_client: tritonclient.grpc.aio.InferenceServerClient,
|
||||
protocol_client: types.ModuleType,
|
||||
log_interval: int,
|
||||
compute_cer: bool,
|
||||
model_name: str,
|
||||
):
|
||||
total_duration = 0.0
|
||||
results = []
|
||||
|
||||
for i, c in enumerate(cuts):
|
||||
if i % log_interval == 0:
|
||||
print(f"{name}: {i}/{len(cuts)}")
|
||||
|
||||
waveform = c.load_audio().reshape(-1).astype(np.float32)
|
||||
sample_rate = 16000
|
||||
|
||||
# padding to nearset 10 seconds
|
||||
samples = np.zeros(
|
||||
(
|
||||
1,
|
||||
10 * sample_rate * (int(len(waveform) / sample_rate // 10) + 1),
|
||||
),
|
||||
dtype=np.float32,
|
||||
)
|
||||
samples[0, : len(waveform)] = waveform
|
||||
|
||||
lengths = np.array([[len(waveform)]], dtype=np.int32)
|
||||
|
||||
inputs = [
|
||||
protocol_client.InferInput(
|
||||
"WAV", samples.shape, np_to_triton_dtype(samples.dtype)
|
||||
),
|
||||
protocol_client.InferInput(
|
||||
"WAV_LENS", lengths.shape, np_to_triton_dtype(lengths.dtype)
|
||||
),
|
||||
]
|
||||
inputs[0].set_data_from_numpy(samples)
|
||||
inputs[1].set_data_from_numpy(lengths)
|
||||
outputs = [protocol_client.InferRequestedOutput("TRANSCRIPTS")]
|
||||
sequence_id = 10086 + i
|
||||
|
||||
response = await triton_client.infer(
|
||||
model_name, inputs, request_id=str(sequence_id), outputs=outputs
|
||||
)
|
||||
|
||||
decoding_results = response.as_numpy("TRANSCRIPTS")[0]
|
||||
if type(decoding_results) == np.ndarray:
|
||||
decoding_results = b" ".join(decoding_results).decode("utf-8")
|
||||
else:
|
||||
# For wenet
|
||||
decoding_results = decoding_results.decode("utf-8")
|
||||
|
||||
total_duration += c.duration
|
||||
|
||||
if compute_cer:
|
||||
ref = c.supervisions[0].text.split()
|
||||
hyp = decoding_results.split()
|
||||
ref = list("".join(ref))
|
||||
hyp = list("".join(hyp))
|
||||
results.append((c.id, ref, hyp))
|
||||
else:
|
||||
results.append(
|
||||
(
|
||||
c.id,
|
||||
c.supervisions[0].text.split(),
|
||||
decoding_results.split(),
|
||||
)
|
||||
) # noqa
|
||||
|
||||
return total_duration, results
|
||||
|
||||
|
||||
async def send_streaming(
|
||||
cuts: CutSet,
|
||||
name: str,
|
||||
triton_client: tritonclient.grpc.aio.InferenceServerClient,
|
||||
protocol_client: types.ModuleType,
|
||||
log_interval: int,
|
||||
compute_cer: bool,
|
||||
model_name: str,
|
||||
first_chunk_in_secs: float,
|
||||
other_chunk_in_secs: float,
|
||||
task_index: int,
|
||||
simulate_mode: bool = False,
|
||||
):
|
||||
total_duration = 0.0
|
||||
results = []
|
||||
latency_data = []
|
||||
|
||||
for i, c in enumerate(cuts):
|
||||
if i % log_interval == 0:
|
||||
print(f"{name}: {i}/{len(cuts)}")
|
||||
|
||||
waveform = c.load_audio().reshape(-1).astype(np.float32)
|
||||
sample_rate = 16000
|
||||
|
||||
wav_segs = []
|
||||
|
||||
j = 0
|
||||
while j < len(waveform):
|
||||
if j == 0:
|
||||
stride = int(first_chunk_in_secs * sample_rate)
|
||||
wav_segs.append(waveform[j : j + stride])
|
||||
else:
|
||||
stride = int(other_chunk_in_secs * sample_rate)
|
||||
wav_segs.append(waveform[j : j + stride])
|
||||
j += len(wav_segs[-1])
|
||||
|
||||
sequence_id = task_index + 10086
|
||||
|
||||
for idx, seg in enumerate(wav_segs):
|
||||
chunk_len = len(seg)
|
||||
|
||||
if simulate_mode:
|
||||
await asyncio.sleep(chunk_len / sample_rate)
|
||||
|
||||
chunk_start = time.time()
|
||||
if idx == 0:
|
||||
chunk_samples = int(first_chunk_in_secs * sample_rate)
|
||||
expect_input = np.zeros((1, chunk_samples), dtype=np.float32)
|
||||
else:
|
||||
chunk_samples = int(other_chunk_in_secs * sample_rate)
|
||||
expect_input = np.zeros((1, chunk_samples), dtype=np.float32)
|
||||
|
||||
expect_input[0][0:chunk_len] = seg
|
||||
input0_data = expect_input
|
||||
input1_data = np.array([[chunk_len]], dtype=np.int32)
|
||||
|
||||
inputs = [
|
||||
protocol_client.InferInput(
|
||||
"WAV",
|
||||
input0_data.shape,
|
||||
np_to_triton_dtype(input0_data.dtype),
|
||||
),
|
||||
protocol_client.InferInput(
|
||||
"WAV_LENS",
|
||||
input1_data.shape,
|
||||
np_to_triton_dtype(input1_data.dtype),
|
||||
),
|
||||
]
|
||||
|
||||
inputs[0].set_data_from_numpy(input0_data)
|
||||
inputs[1].set_data_from_numpy(input1_data)
|
||||
|
||||
outputs = [protocol_client.InferRequestedOutput("TRANSCRIPTS")]
|
||||
end = False
|
||||
if idx == len(wav_segs) - 1:
|
||||
end = True
|
||||
|
||||
response = await triton_client.infer(
|
||||
model_name,
|
||||
inputs,
|
||||
outputs=outputs,
|
||||
sequence_id=sequence_id,
|
||||
sequence_start=idx == 0,
|
||||
sequence_end=end,
|
||||
)
|
||||
idx += 1
|
||||
|
||||
decoding_results = response.as_numpy("TRANSCRIPTS")
|
||||
if type(decoding_results) == np.ndarray:
|
||||
decoding_results = b" ".join(decoding_results).decode("utf-8")
|
||||
else:
|
||||
# For wenet
|
||||
decoding_results = response.as_numpy("TRANSCRIPTS")[0].decode(
|
||||
"utf-8"
|
||||
)
|
||||
chunk_end = time.time() - chunk_start
|
||||
latency_data.append((chunk_end, chunk_len / sample_rate))
|
||||
|
||||
total_duration += c.duration
|
||||
|
||||
if compute_cer:
|
||||
ref = c.supervisions[0].text.split()
|
||||
hyp = decoding_results.split()
|
||||
ref = list("".join(ref))
|
||||
hyp = list("".join(hyp))
|
||||
results.append((c.id, ref, hyp))
|
||||
else:
|
||||
results.append(
|
||||
(
|
||||
c.id,
|
||||
c.supervisions[0].text.split(),
|
||||
decoding_results.split(),
|
||||
)
|
||||
) # noqa
|
||||
|
||||
return total_duration, results, latency_data
|
||||
|
||||
|
||||
async def main():
|
||||
args = get_args()
|
||||
filename = args.manifest_filename
|
||||
server_addr = args.server_addr
|
||||
server_port = args.server_port
|
||||
url = f"{server_addr}:{server_port}"
|
||||
num_tasks = args.num_tasks
|
||||
log_interval = args.log_interval
|
||||
compute_cer = args.compute_cer
|
||||
|
||||
cuts = load_manifest(filename)
|
||||
cuts_list = cuts.split(num_tasks)
|
||||
tasks = []
|
||||
|
||||
triton_client = grpcclient.InferenceServerClient(url=url, verbose=False)
|
||||
protocol_client = grpcclient
|
||||
|
||||
if args.streaming or args.simulate_streaming:
|
||||
frame_shift_ms = 10
|
||||
frame_length_ms = 25
|
||||
add_frames = math.ceil(
|
||||
(frame_length_ms - frame_shift_ms) / frame_shift_ms
|
||||
)
|
||||
# decode_window_length: input sequence length of streaming encoder
|
||||
if args.context > 0:
|
||||
# decode window length calculation for wenet
|
||||
decode_window_length = (
|
||||
args.chunk_size - 1
|
||||
) * args.subsampling + args.context
|
||||
else:
|
||||
# decode window length calculation for icefall
|
||||
decode_window_length = (
|
||||
args.chunk_size + 2 + args.encoder_right_context
|
||||
) * args.subsampling + 3
|
||||
|
||||
first_chunk_ms = (decode_window_length + add_frames) * frame_shift_ms
|
||||
|
||||
start_time = time.time()
|
||||
for i in range(num_tasks):
|
||||
if args.streaming:
|
||||
assert not args.simulate_streaming
|
||||
task = asyncio.create_task(
|
||||
send_streaming(
|
||||
cuts=cuts_list[i],
|
||||
name=f"task-{i}",
|
||||
triton_client=triton_client,
|
||||
protocol_client=protocol_client,
|
||||
log_interval=log_interval,
|
||||
compute_cer=compute_cer,
|
||||
model_name=args.model_name,
|
||||
first_chunk_in_secs=first_chunk_ms / 1000,
|
||||
other_chunk_in_secs=args.chunk_size
|
||||
* args.subsampling
|
||||
* frame_shift_ms
|
||||
/ 1000,
|
||||
task_index=i,
|
||||
)
|
||||
)
|
||||
elif args.simulate_streaming:
|
||||
task = asyncio.create_task(
|
||||
send_streaming(
|
||||
cuts=cuts_list[i],
|
||||
name=f"task-{i}",
|
||||
triton_client=triton_client,
|
||||
protocol_client=protocol_client,
|
||||
log_interval=log_interval,
|
||||
compute_cer=compute_cer,
|
||||
model_name=args.model_name,
|
||||
first_chunk_in_secs=first_chunk_ms / 1000,
|
||||
other_chunk_in_secs=args.chunk_size
|
||||
* args.subsampling
|
||||
* frame_shift_ms
|
||||
/ 1000,
|
||||
task_index=i,
|
||||
simulate_mode=True,
|
||||
)
|
||||
)
|
||||
else:
|
||||
task = asyncio.create_task(
|
||||
send(
|
||||
cuts=cuts_list[i],
|
||||
name=f"task-{i}",
|
||||
triton_client=triton_client,
|
||||
protocol_client=protocol_client,
|
||||
log_interval=log_interval,
|
||||
compute_cer=compute_cer,
|
||||
model_name=args.model_name,
|
||||
)
|
||||
)
|
||||
tasks.append(task)
|
||||
|
||||
ans_list = await asyncio.gather(*tasks)
|
||||
|
||||
end_time = time.time()
|
||||
elapsed = end_time - start_time
|
||||
|
||||
results = []
|
||||
total_duration = 0.0
|
||||
latency_data = []
|
||||
for ans in ans_list:
|
||||
total_duration += ans[0]
|
||||
results += ans[1]
|
||||
if args.streaming or args.simulate_streaming:
|
||||
latency_data += ans[2]
|
||||
|
||||
rtf = elapsed / total_duration
|
||||
|
||||
s = f"RTF: {rtf:.4f}\n"
|
||||
s += f"total_duration: {total_duration:.3f} seconds\n"
|
||||
s += f"({total_duration/3600:.2f} hours)\n"
|
||||
s += (
|
||||
f"processing time: {elapsed:.3f} seconds "
|
||||
f"({elapsed/3600:.2f} hours)\n"
|
||||
)
|
||||
|
||||
if args.streaming or args.simulate_streaming:
|
||||
latency_list = [
|
||||
chunk_end for (chunk_end, chunk_duration) in latency_data
|
||||
]
|
||||
latency_ms = sum(latency_list) / float(len(latency_list)) * 1000.0
|
||||
latency_variance = np.var(latency_list, dtype=np.float64) * 1000.0
|
||||
s += f"latency_variance: {latency_variance:.2f}\n"
|
||||
s += f"latency_50_percentile: {np.percentile(latency_list, 50) * 1000.0:.2f}\n"
|
||||
s += f"latency_90_percentile: {np.percentile(latency_list, 90) * 1000.0:.2f}\n"
|
||||
s += f"latency_99_percentile: {np.percentile(latency_list, 99) * 1000.0:.2f}\n"
|
||||
s += f"average_latency_ms: {latency_ms:.2f}\n"
|
||||
|
||||
print(s)
|
||||
|
||||
with open("rtf.txt", "w") as f:
|
||||
f.write(s)
|
||||
|
||||
name = Path(filename).stem.split(".")[0]
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=f"recogs-{name}.txt", texts=results)
|
||||
|
||||
with open(f"errs-{name}.txt", "w") as f:
|
||||
write_error_stats(f, "test-set", results, enable_log=True)
|
||||
|
||||
with open(f"errs-{name}.txt", "r") as f:
|
||||
print(f.readline()) # WER
|
||||
print(f.readline()) # Detailed errors
|
||||
|
||||
if args.stats_file:
|
||||
stats = await triton_client.get_inference_statistics(
|
||||
model_name="", as_json=True
|
||||
)
|
||||
with open(args.stats_file, "w") as f:
|
||||
json.dump(stats, f)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
@@ -0,0 +1,561 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
# 2023 Nvidia (authors: Yuekai Zhang)
|
||||
# 2023 Recurrent.ai (authors: Songtao Shi)
|
||||
# See LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This script loads a manifest in nemo format and sends it to the server
|
||||
for decoding, in parallel.
|
||||
|
||||
{'audio_filepath':'','text':'',duration:}\n
|
||||
{'audio_filepath':'','text':'',duration:}\n
|
||||
|
||||
Usage:
|
||||
# For aishell manifests:
|
||||
apt-get install git-lfs
|
||||
git-lfs install
|
||||
git clone https://huggingface.co/csukuangfj/aishell-test-dev-manifests
|
||||
sudo mkdir -p ./aishell-test-dev-manifests/aishell
|
||||
tar xf ./aishell-test-dev-manifests/data_aishell.tar.gz -C ./aishell-test-dev-manifests/aishell # noqa
|
||||
|
||||
|
||||
# cmd run
|
||||
manifest_path='./client/aishell_test.txt'
|
||||
serveraddr=localhost
|
||||
num_task=60
|
||||
python3 client/decode_manifest_triton_wo_cuts.py \
|
||||
--server-addr $serveraddr \
|
||||
--compute-cer \
|
||||
--model-name infer_pipeline \
|
||||
--num-tasks $num_task \
|
||||
--manifest-filename $manifest_path \
|
||||
"""
|
||||
|
||||
from pydub import AudioSegment
|
||||
import argparse
|
||||
import asyncio
|
||||
import math
|
||||
import time
|
||||
import types
|
||||
from pathlib import Path
|
||||
import json
|
||||
import os
|
||||
import numpy as np
|
||||
import tritonclient
|
||||
import tritonclient.grpc.aio as grpcclient
|
||||
from tritonclient.utils import np_to_triton_dtype
|
||||
|
||||
from icefall.utils import store_transcripts, write_error_stats
|
||||
|
||||
DEFAULT_MANIFEST_FILENAME = "./aishell_test.txt" # noqa
|
||||
DEFAULT_ROOT = './'
|
||||
DEFAULT_ROOT = '/mfs/songtao/researchcode/FunASR/data/'
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--server-addr",
|
||||
type=str,
|
||||
default="localhost",
|
||||
help="Address of the server",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--server-port",
|
||||
type=int,
|
||||
default=8001,
|
||||
help="Port of the server",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--manifest-filename",
|
||||
type=str,
|
||||
default=DEFAULT_MANIFEST_FILENAME,
|
||||
help="Path to the manifest for decoding",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default="transducer",
|
||||
help="triton model_repo module name to request",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-tasks",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Number of tasks to use for sending",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--log-interval",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Controls how frequently we print the log.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--compute-cer",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="""True to compute CER, e.g., for Chinese.
|
||||
False to compute WER, e.g., for English words.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--streaming",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="""True for streaming ASR.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--simulate-streaming",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="""True for strictly simulate streaming ASR.
|
||||
Threads will sleep to simulate the real speaking scene.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--chunk_size",
|
||||
type=int,
|
||||
required=False,
|
||||
default=16,
|
||||
help="chunk size default is 16",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--context",
|
||||
type=int,
|
||||
required=False,
|
||||
default=-1,
|
||||
help="subsampling context for wenet",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder_right_context",
|
||||
type=int,
|
||||
required=False,
|
||||
default=2,
|
||||
help="encoder right context",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--subsampling",
|
||||
type=int,
|
||||
required=False,
|
||||
default=4,
|
||||
help="subsampling rate",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--stats_file",
|
||||
type=str,
|
||||
required=False,
|
||||
default="./stats.json",
|
||||
help="output of stats anaylasis",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def load_manifest(fp):
|
||||
data = []
|
||||
with open(fp) as f:
|
||||
for i, dp in enumerate(f.readlines()):
|
||||
dp = eval(dp)
|
||||
dp['id'] = i
|
||||
data.append(dp)
|
||||
return data
|
||||
|
||||
|
||||
def split_dps(dps, num_tasks):
|
||||
dps_splited = []
|
||||
# import pdb;pdb.set_trace()
|
||||
assert len(dps) > num_tasks
|
||||
|
||||
one_task_num = len(dps)//num_tasks
|
||||
for i in range(0, len(dps), one_task_num):
|
||||
if i+one_task_num >= len(dps):
|
||||
for k, j in enumerate(range(i, len(dps))):
|
||||
dps_splited[k].append(dps[j])
|
||||
else:
|
||||
dps_splited.append(dps[i:i+one_task_num])
|
||||
return dps_splited
|
||||
|
||||
|
||||
def load_audio(path):
|
||||
audio = AudioSegment.from_wav(path).set_frame_rate(16000).set_channels(1)
|
||||
audiop_np = np.array(audio.get_array_of_samples())/32768.0
|
||||
return audiop_np.astype(np.float32), audio.duration_seconds
|
||||
|
||||
|
||||
async def send(
|
||||
dps: list,
|
||||
name: str,
|
||||
triton_client: tritonclient.grpc.aio.InferenceServerClient,
|
||||
protocol_client: types.ModuleType,
|
||||
log_interval: int,
|
||||
compute_cer: bool,
|
||||
model_name: str,
|
||||
):
|
||||
total_duration = 0.0
|
||||
results = []
|
||||
|
||||
for i, dp in enumerate(dps):
|
||||
if i % log_interval == 0:
|
||||
print(f"{name}: {i}/{len(dps)}")
|
||||
|
||||
waveform, duration = load_audio(
|
||||
os.path.join(DEFAULT_ROOT, dp['audio_filepath']))
|
||||
sample_rate = 16000
|
||||
|
||||
# padding to nearset 10 seconds
|
||||
samples = np.zeros(
|
||||
(
|
||||
1,
|
||||
10 * sample_rate *
|
||||
(int(len(waveform) / sample_rate // 10) + 1),
|
||||
),
|
||||
dtype=np.float32,
|
||||
)
|
||||
samples[0, : len(waveform)] = waveform
|
||||
|
||||
lengths = np.array([[len(waveform)]], dtype=np.int32)
|
||||
|
||||
inputs = [
|
||||
protocol_client.InferInput(
|
||||
"WAV", samples.shape, np_to_triton_dtype(samples.dtype)
|
||||
),
|
||||
protocol_client.InferInput(
|
||||
"WAV_LENS", lengths.shape, np_to_triton_dtype(lengths.dtype)
|
||||
),
|
||||
]
|
||||
inputs[0].set_data_from_numpy(samples)
|
||||
inputs[1].set_data_from_numpy(lengths)
|
||||
outputs = [protocol_client.InferRequestedOutput("TRANSCRIPTS")]
|
||||
sequence_id = 10086 + i
|
||||
|
||||
response = await triton_client.infer(
|
||||
model_name, inputs, request_id=str(sequence_id), outputs=outputs
|
||||
)
|
||||
|
||||
decoding_results = response.as_numpy("TRANSCRIPTS")[0]
|
||||
if type(decoding_results) == np.ndarray:
|
||||
decoding_results = b" ".join(decoding_results).decode("utf-8")
|
||||
else:
|
||||
# For wenet
|
||||
decoding_results = decoding_results.decode("utf-8")
|
||||
|
||||
total_duration += duration
|
||||
|
||||
if compute_cer:
|
||||
ref = dp['text'].split()
|
||||
hyp = decoding_results.split()
|
||||
ref = list("".join(ref))
|
||||
hyp = list("".join(hyp))
|
||||
results.append((dp['id'], ref, hyp))
|
||||
else:
|
||||
results.append(
|
||||
(
|
||||
dp['id'],
|
||||
dp['text'].split(),
|
||||
decoding_results.split(),
|
||||
)
|
||||
) # noqa
|
||||
|
||||
return total_duration, results
|
||||
|
||||
|
||||
async def send_streaming(
|
||||
dps: list,
|
||||
name: str,
|
||||
triton_client: tritonclient.grpc.aio.InferenceServerClient,
|
||||
protocol_client: types.ModuleType,
|
||||
log_interval: int,
|
||||
compute_cer: bool,
|
||||
model_name: str,
|
||||
first_chunk_in_secs: float,
|
||||
other_chunk_in_secs: float,
|
||||
task_index: int,
|
||||
simulate_mode: bool = False,
|
||||
):
|
||||
total_duration = 0.0
|
||||
results = []
|
||||
latency_data = []
|
||||
|
||||
for i, dp in enumerate(dps):
|
||||
if i % log_interval == 0:
|
||||
print(f"{name}: {i}/{len(dps)}")
|
||||
|
||||
waveform, duration = load_audio(dp['audio_filepath'])
|
||||
sample_rate = 16000
|
||||
|
||||
wav_segs = []
|
||||
|
||||
j = 0
|
||||
while j < len(waveform):
|
||||
if j == 0:
|
||||
stride = int(first_chunk_in_secs * sample_rate)
|
||||
wav_segs.append(waveform[j: j + stride])
|
||||
else:
|
||||
stride = int(other_chunk_in_secs * sample_rate)
|
||||
wav_segs.append(waveform[j: j + stride])
|
||||
j += len(wav_segs[-1])
|
||||
|
||||
sequence_id = task_index + 10086
|
||||
|
||||
for idx, seg in enumerate(wav_segs):
|
||||
chunk_len = len(seg)
|
||||
|
||||
if simulate_mode:
|
||||
await asyncio.sleep(chunk_len / sample_rate)
|
||||
|
||||
chunk_start = time.time()
|
||||
if idx == 0:
|
||||
chunk_samples = int(first_chunk_in_secs * sample_rate)
|
||||
expect_input = np.zeros((1, chunk_samples), dtype=np.float32)
|
||||
else:
|
||||
chunk_samples = int(other_chunk_in_secs * sample_rate)
|
||||
expect_input = np.zeros((1, chunk_samples), dtype=np.float32)
|
||||
|
||||
expect_input[0][0:chunk_len] = seg
|
||||
input0_data = expect_input
|
||||
input1_data = np.array([[chunk_len]], dtype=np.int32)
|
||||
|
||||
inputs = [
|
||||
protocol_client.InferInput(
|
||||
"WAV",
|
||||
input0_data.shape,
|
||||
np_to_triton_dtype(input0_data.dtype),
|
||||
),
|
||||
protocol_client.InferInput(
|
||||
"WAV_LENS",
|
||||
input1_data.shape,
|
||||
np_to_triton_dtype(input1_data.dtype),
|
||||
),
|
||||
]
|
||||
|
||||
inputs[0].set_data_from_numpy(input0_data)
|
||||
inputs[1].set_data_from_numpy(input1_data)
|
||||
|
||||
outputs = [protocol_client.InferRequestedOutput("TRANSCRIPTS")]
|
||||
end = False
|
||||
if idx == len(wav_segs) - 1:
|
||||
end = True
|
||||
|
||||
response = await triton_client.infer(
|
||||
model_name,
|
||||
inputs,
|
||||
outputs=outputs,
|
||||
sequence_id=sequence_id,
|
||||
sequence_start=idx == 0,
|
||||
sequence_end=end,
|
||||
)
|
||||
idx += 1
|
||||
|
||||
decoding_results = response.as_numpy("TRANSCRIPTS")
|
||||
if type(decoding_results) == np.ndarray:
|
||||
decoding_results = b" ".join(decoding_results).decode("utf-8")
|
||||
else:
|
||||
# For wenet
|
||||
decoding_results = response.as_numpy("TRANSCRIPTS")[0].decode(
|
||||
"utf-8"
|
||||
)
|
||||
chunk_end = time.time() - chunk_start
|
||||
latency_data.append((chunk_end, chunk_len / sample_rate))
|
||||
|
||||
total_duration += duration
|
||||
|
||||
if compute_cer:
|
||||
ref = dp['text'].split()
|
||||
hyp = decoding_results.split()
|
||||
ref = list("".join(ref))
|
||||
hyp = list("".join(hyp))
|
||||
results.append((dp['id'], ref, hyp))
|
||||
else:
|
||||
results.append(
|
||||
(
|
||||
dp['id'],
|
||||
dp['text'].split(),
|
||||
decoding_results.split(),
|
||||
)
|
||||
) # noqa
|
||||
|
||||
return total_duration, results, latency_data
|
||||
|
||||
|
||||
async def main():
|
||||
args = get_args()
|
||||
filename = args.manifest_filename
|
||||
server_addr = args.server_addr
|
||||
server_port = args.server_port
|
||||
url = f"{server_addr}:{server_port}"
|
||||
num_tasks = args.num_tasks
|
||||
log_interval = args.log_interval
|
||||
compute_cer = args.compute_cer
|
||||
|
||||
dps = load_manifest(filename)
|
||||
dps_list = split_dps(dps, num_tasks)
|
||||
tasks = []
|
||||
|
||||
triton_client = grpcclient.InferenceServerClient(url=url, verbose=False)
|
||||
protocol_client = grpcclient
|
||||
|
||||
if args.streaming or args.simulate_streaming:
|
||||
frame_shift_ms = 10
|
||||
frame_length_ms = 25
|
||||
add_frames = math.ceil(
|
||||
(frame_length_ms - frame_shift_ms) / frame_shift_ms
|
||||
)
|
||||
# decode_window_length: input sequence length of streaming encoder
|
||||
if args.context > 0:
|
||||
# decode window length calculation for wenet
|
||||
decode_window_length = (
|
||||
args.chunk_size - 1
|
||||
) * args.subsampling + args.context
|
||||
else:
|
||||
# decode window length calculation for icefall
|
||||
decode_window_length = (
|
||||
args.chunk_size + 2 + args.encoder_right_context
|
||||
) * args.subsampling + 3
|
||||
|
||||
first_chunk_ms = (decode_window_length + add_frames) * frame_shift_ms
|
||||
|
||||
start_time = time.time()
|
||||
for i in range(num_tasks):
|
||||
if args.streaming:
|
||||
assert not args.simulate_streaming
|
||||
task = asyncio.create_task(
|
||||
send_streaming(
|
||||
dps=dps_list[i],
|
||||
name=f"task-{i}",
|
||||
triton_client=triton_client,
|
||||
protocol_client=protocol_client,
|
||||
log_interval=log_interval,
|
||||
compute_cer=compute_cer,
|
||||
model_name=args.model_name,
|
||||
first_chunk_in_secs=first_chunk_ms / 1000,
|
||||
other_chunk_in_secs=args.chunk_size
|
||||
* args.subsampling
|
||||
* frame_shift_ms
|
||||
/ 1000,
|
||||
task_index=i,
|
||||
)
|
||||
)
|
||||
elif args.simulate_streaming:
|
||||
task = asyncio.create_task(
|
||||
send_streaming(
|
||||
dps=dps_list[i],
|
||||
name=f"task-{i}",
|
||||
triton_client=triton_client,
|
||||
protocol_client=protocol_client,
|
||||
log_interval=log_interval,
|
||||
compute_cer=compute_cer,
|
||||
model_name=args.model_name,
|
||||
first_chunk_in_secs=first_chunk_ms / 1000,
|
||||
other_chunk_in_secs=args.chunk_size
|
||||
* args.subsampling
|
||||
* frame_shift_ms
|
||||
/ 1000,
|
||||
task_index=i,
|
||||
simulate_mode=True,
|
||||
)
|
||||
)
|
||||
else:
|
||||
task = asyncio.create_task(
|
||||
send(
|
||||
dps=dps_list[i],
|
||||
name=f"task-{i}",
|
||||
triton_client=triton_client,
|
||||
protocol_client=protocol_client,
|
||||
log_interval=log_interval,
|
||||
compute_cer=compute_cer,
|
||||
model_name=args.model_name,
|
||||
)
|
||||
)
|
||||
tasks.append(task)
|
||||
|
||||
ans_list = await asyncio.gather(*tasks)
|
||||
|
||||
end_time = time.time()
|
||||
elapsed = end_time - start_time
|
||||
|
||||
results = []
|
||||
total_duration = 0.0
|
||||
latency_data = []
|
||||
for ans in ans_list:
|
||||
total_duration += ans[0]
|
||||
results += ans[1]
|
||||
if args.streaming or args.simulate_streaming:
|
||||
latency_data += ans[2]
|
||||
|
||||
rtf = elapsed / total_duration
|
||||
|
||||
s = f"RTF: {rtf:.4f}\n"
|
||||
s += f"total_duration: {total_duration:.3f} seconds\n"
|
||||
s += f"({total_duration/3600:.2f} hours)\n"
|
||||
s += (
|
||||
f"processing time: {elapsed:.3f} seconds "
|
||||
f"({elapsed/3600:.2f} hours)\n"
|
||||
)
|
||||
|
||||
if args.streaming or args.simulate_streaming:
|
||||
latency_list = [
|
||||
chunk_end for (chunk_end, chunk_duration) in latency_data
|
||||
]
|
||||
latency_ms = sum(latency_list) / float(len(latency_list)) * 1000.0
|
||||
latency_variance = np.var(latency_list, dtype=np.float64) * 1000.0
|
||||
s += f"latency_variance: {latency_variance:.2f}\n"
|
||||
s += f"latency_50_percentile: {np.percentile(latency_list, 50) * 1000.0:.2f}\n"
|
||||
s += f"latency_90_percentile: {np.percentile(latency_list, 90) * 1000.0:.2f}\n"
|
||||
s += f"latency_99_percentile: {np.percentile(latency_list, 99) * 1000.0:.2f}\n"
|
||||
s += f"average_latency_ms: {latency_ms:.2f}\n"
|
||||
|
||||
print(s)
|
||||
|
||||
with open("rtf.txt", "w") as f:
|
||||
f.write(s)
|
||||
|
||||
name = Path(filename).stem.split(".")[0]
|
||||
results = sorted(results)
|
||||
store_transcripts(filename=f"recogs-{name}.txt", texts=results)
|
||||
|
||||
with open(f"errs-{name}.txt", "w") as f:
|
||||
write_error_stats(f, "test-set", results, enable_log=True)
|
||||
|
||||
with open(f"errs-{name}.txt", "r") as f:
|
||||
print(f.readline()) # WER
|
||||
print(f.readline()) # Detailed errors
|
||||
|
||||
if args.stats_file:
|
||||
stats = await triton_client.get_inference_statistics(
|
||||
model_name="", as_json=True
|
||||
)
|
||||
with open(args.stats_file, "w") as f:
|
||||
json.dump(stats, f)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
142
funasr_local/runtime/triton_gpu/client/speech_client.py
Normal file
142
funasr_local/runtime/triton_gpu/client/speech_client.py
Normal file
@@ -0,0 +1,142 @@
|
||||
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from tritonclient.utils import np_to_triton_dtype
|
||||
import numpy as np
|
||||
import math
|
||||
import soundfile as sf
|
||||
|
||||
|
||||
class OfflineSpeechClient(object):
|
||||
def __init__(self, triton_client, model_name, protocol_client, args):
|
||||
self.triton_client = triton_client
|
||||
self.protocol_client = protocol_client
|
||||
self.model_name = model_name
|
||||
|
||||
def recognize(self, wav_file, idx=0):
|
||||
waveform, sample_rate = sf.read(wav_file)
|
||||
samples = np.array([waveform], dtype=np.float32)
|
||||
lengths = np.array([[len(waveform)]], dtype=np.int32)
|
||||
# better pad waveform to nearest length here
|
||||
# target_seconds = math.cel(len(waveform) / sample_rate)
|
||||
# target_samples = np.zeros([1, target_seconds * sample_rate])
|
||||
# target_samples[0][0: len(waveform)] = waveform
|
||||
# samples = target_samples
|
||||
sequence_id = 10086 + idx
|
||||
result = ""
|
||||
inputs = [
|
||||
self.protocol_client.InferInput(
|
||||
"WAV", samples.shape, np_to_triton_dtype(samples.dtype)
|
||||
),
|
||||
self.protocol_client.InferInput(
|
||||
"WAV_LENS", lengths.shape, np_to_triton_dtype(lengths.dtype)
|
||||
),
|
||||
]
|
||||
inputs[0].set_data_from_numpy(samples)
|
||||
inputs[1].set_data_from_numpy(lengths)
|
||||
outputs = [self.protocol_client.InferRequestedOutput("TRANSCRIPTS")]
|
||||
response = self.triton_client.infer(
|
||||
self.model_name,
|
||||
inputs,
|
||||
request_id=str(sequence_id),
|
||||
outputs=outputs,
|
||||
)
|
||||
result = response.as_numpy("TRANSCRIPTS")[0].decode("utf-8")
|
||||
return [result]
|
||||
|
||||
|
||||
class StreamingSpeechClient(object):
|
||||
def __init__(self, triton_client, model_name, protocol_client, args):
|
||||
self.triton_client = triton_client
|
||||
self.protocol_client = protocol_client
|
||||
self.model_name = model_name
|
||||
chunk_size = args.chunk_size
|
||||
subsampling = args.subsampling
|
||||
context = args.context
|
||||
frame_shift_ms = args.frame_shift_ms
|
||||
frame_length_ms = args.frame_length_ms
|
||||
# for the first chunk
|
||||
# we need additional frames to generate
|
||||
# the exact first chunk length frames
|
||||
# since the subsampling will look ahead several frames
|
||||
first_chunk_length = (chunk_size - 1) * subsampling + context
|
||||
add_frames = math.ceil(
|
||||
(frame_length_ms - frame_shift_ms) / frame_shift_ms
|
||||
)
|
||||
first_chunk_ms = (first_chunk_length + add_frames) * frame_shift_ms
|
||||
other_chunk_ms = chunk_size * subsampling * frame_shift_ms
|
||||
self.first_chunk_in_secs = first_chunk_ms / 1000
|
||||
self.other_chunk_in_secs = other_chunk_ms / 1000
|
||||
|
||||
def recognize(self, wav_file, idx=0):
|
||||
waveform, sample_rate = sf.read(wav_file)
|
||||
wav_segs = []
|
||||
i = 0
|
||||
while i < len(waveform):
|
||||
if i == 0:
|
||||
stride = int(self.first_chunk_in_secs * sample_rate)
|
||||
wav_segs.append(waveform[i : i + stride])
|
||||
else:
|
||||
stride = int(self.other_chunk_in_secs * sample_rate)
|
||||
wav_segs.append(waveform[i : i + stride])
|
||||
i += len(wav_segs[-1])
|
||||
|
||||
sequence_id = idx + 10086
|
||||
# simulate streaming
|
||||
for idx, seg in enumerate(wav_segs):
|
||||
chunk_len = len(seg)
|
||||
if idx == 0:
|
||||
chunk_samples = int(self.first_chunk_in_secs * sample_rate)
|
||||
expect_input = np.zeros((1, chunk_samples), dtype=np.float32)
|
||||
else:
|
||||
chunk_samples = int(self.other_chunk_in_secs * sample_rate)
|
||||
expect_input = np.zeros((1, chunk_samples), dtype=np.float32)
|
||||
|
||||
expect_input[0][0:chunk_len] = seg
|
||||
input0_data = expect_input
|
||||
input1_data = np.array([[chunk_len]], dtype=np.int32)
|
||||
|
||||
inputs = [
|
||||
self.protocol_client.InferInput(
|
||||
"WAV",
|
||||
input0_data.shape,
|
||||
np_to_triton_dtype(input0_data.dtype),
|
||||
),
|
||||
self.protocol_client.InferInput(
|
||||
"WAV_LENS",
|
||||
input1_data.shape,
|
||||
np_to_triton_dtype(input1_data.dtype),
|
||||
),
|
||||
]
|
||||
|
||||
inputs[0].set_data_from_numpy(input0_data)
|
||||
inputs[1].set_data_from_numpy(input1_data)
|
||||
|
||||
outputs = [self.protocol_client.InferRequestedOutput("TRANSCRIPTS")]
|
||||
end = False
|
||||
if idx == len(wav_segs) - 1:
|
||||
end = True
|
||||
|
||||
response = self.triton_client.infer(
|
||||
self.model_name,
|
||||
inputs,
|
||||
outputs=outputs,
|
||||
sequence_id=sequence_id,
|
||||
sequence_start=idx == 0,
|
||||
sequence_end=end,
|
||||
)
|
||||
idx += 1
|
||||
result = response.as_numpy("TRANSCRIPTS")[0].decode("utf-8")
|
||||
print("Get response from {}th chunk: {}".format(idx, result))
|
||||
return [result]
|
||||
BIN
funasr_local/runtime/triton_gpu/client/test_wavs/long.wav
Normal file
BIN
funasr_local/runtime/triton_gpu/client/test_wavs/long.wav
Normal file
Binary file not shown.
BIN
funasr_local/runtime/triton_gpu/client/test_wavs/mid.wav
Normal file
BIN
funasr_local/runtime/triton_gpu/client/test_wavs/mid.wav
Normal file
Binary file not shown.
60
funasr_local/runtime/triton_gpu/client/utils.py
Normal file
60
funasr_local/runtime/triton_gpu/client/utils.py
Normal file
@@ -0,0 +1,60 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _levenshtein_distance(ref, hyp):
|
||||
"""Levenshtein distance is a string metric for measuring the difference
|
||||
between two sequences. Informally, the levenshtein disctance is defined as
|
||||
the minimum number of single-character edits (substitutions, insertions or
|
||||
deletions) required to change one word into the other. We can naturally
|
||||
extend the edits to word level when calculate levenshtein disctance for
|
||||
two sentences.
|
||||
"""
|
||||
m = len(ref)
|
||||
n = len(hyp)
|
||||
|
||||
# special case
|
||||
if ref == hyp:
|
||||
return 0
|
||||
if m == 0:
|
||||
return n
|
||||
if n == 0:
|
||||
return m
|
||||
|
||||
if m < n:
|
||||
ref, hyp = hyp, ref
|
||||
m, n = n, m
|
||||
|
||||
# use O(min(m, n)) space
|
||||
distance = np.zeros((2, n + 1), dtype=np.int32)
|
||||
|
||||
# initialize distance matrix
|
||||
for j in range(n + 1):
|
||||
distance[0][j] = j
|
||||
|
||||
# calculate levenshtein distance
|
||||
for i in range(1, m + 1):
|
||||
prev_row_idx = (i - 1) % 2
|
||||
cur_row_idx = i % 2
|
||||
distance[cur_row_idx][0] = i
|
||||
for j in range(1, n + 1):
|
||||
if ref[i - 1] == hyp[j - 1]:
|
||||
distance[cur_row_idx][j] = distance[prev_row_idx][j - 1]
|
||||
else:
|
||||
s_num = distance[prev_row_idx][j - 1] + 1
|
||||
i_num = distance[cur_row_idx][j - 1] + 1
|
||||
d_num = distance[prev_row_idx][j] + 1
|
||||
distance[cur_row_idx][j] = min(s_num, i_num, d_num)
|
||||
|
||||
return distance[m % 2][n]
|
||||
|
||||
|
||||
def cal_cer(references, predictions):
|
||||
errors = 0
|
||||
lengths = 0
|
||||
for ref, pred in zip(references, predictions):
|
||||
cur_ref = list(ref)
|
||||
cur_hyp = list(pred)
|
||||
cur_error = _levenshtein_distance(cur_ref, cur_hyp)
|
||||
errors += cur_error
|
||||
lengths += len(cur_ref)
|
||||
return float(errors) / lengths
|
||||
@@ -0,0 +1,61 @@
|
||||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: "encoder"
|
||||
backend: "onnxruntime"
|
||||
default_model_filename: "model.onnx"
|
||||
|
||||
max_batch_size: 64
|
||||
|
||||
input [
|
||||
{
|
||||
name: "speech"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1, 560]
|
||||
},
|
||||
{
|
||||
name: "speech_lengths"
|
||||
data_type: TYPE_INT32
|
||||
dims: [1]
|
||||
reshape: { shape: [ ] }
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "logits"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1, 8404]
|
||||
},
|
||||
{
|
||||
name: "token_num"
|
||||
data_type: TYPE_INT32
|
||||
dims: [1]
|
||||
reshape: { shape: [ ] }
|
||||
}
|
||||
]
|
||||
|
||||
dynamic_batching {
|
||||
preferred_batch_size: [ 2,4,8,16,32,64 ]
|
||||
max_queue_delay_microseconds: 500
|
||||
}
|
||||
|
||||
|
||||
instance_group [
|
||||
{
|
||||
count: 1
|
||||
kind: KIND_GPU
|
||||
}
|
||||
]
|
||||
|
||||
@@ -0,0 +1,317 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import math
|
||||
import triton_python_backend_utils as pb_utils
|
||||
from torch.utils.dlpack import to_dlpack
|
||||
import torch
|
||||
import numpy as np
|
||||
import kaldifeat
|
||||
import _kaldifeat
|
||||
from typing import List
|
||||
import json
|
||||
import yaml
|
||||
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union
|
||||
|
||||
class LFR(torch.nn.Module):
|
||||
"""Batch LFR: https://github.com/Mddct/devil-asr/blob/main/patch/lfr.py """
|
||||
def __init__(self, m: int = 7, n: int = 6) -> None:
|
||||
"""
|
||||
Actually, this implements stacking frames and skipping frames.
|
||||
if m = 1 and n = 1, just return the origin features.
|
||||
if m = 1 and n > 1, it works like skipping.
|
||||
if m > 1 and n = 1, it works like stacking but only support right frames.
|
||||
if m > 1 and n > 1, it works like LFR.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.m = m
|
||||
self.n = n
|
||||
|
||||
self.left_padding_nums = math.ceil((self.m - 1) // 2)
|
||||
|
||||
def forward(self, input_tensor: torch.Tensor,
|
||||
input_lens: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
B, _, D = input_tensor.size()
|
||||
n_lfr = torch.ceil(input_lens / self.n)
|
||||
|
||||
prepad_nums = input_lens + self.left_padding_nums
|
||||
|
||||
right_padding_nums = torch.where(
|
||||
self.m >= (prepad_nums - self.n * (n_lfr - 1)),
|
||||
self.m - (prepad_nums - self.n * (n_lfr - 1)),
|
||||
0,
|
||||
)
|
||||
|
||||
T_all = self.left_padding_nums + input_lens + right_padding_nums
|
||||
|
||||
new_len = T_all // self.n
|
||||
|
||||
T_all_max = T_all.max().int()
|
||||
|
||||
tail_frames_index = (input_lens - 1).view(B, 1, 1).repeat(1, 1, D) # [B,1,D]
|
||||
|
||||
tail_frames = torch.gather(input_tensor, 1, tail_frames_index)
|
||||
tail_frames = tail_frames.repeat(1, right_padding_nums.max().int(), 1)
|
||||
head_frames = input_tensor[:, 0:1, :].repeat(1, self.left_padding_nums, 1)
|
||||
|
||||
# stack
|
||||
input_tensor = torch.cat([head_frames, input_tensor, tail_frames], dim=1)
|
||||
|
||||
index = torch.arange(T_all_max,
|
||||
device=input_tensor.device,
|
||||
dtype=input_lens.dtype).unsqueeze(0).repeat(B, 1) # [B, T_all_max]
|
||||
index_mask = (index <
|
||||
(self.left_padding_nums + input_lens).unsqueeze(1)
|
||||
) #[B, T_all_max]
|
||||
|
||||
tail_index_mask = torch.logical_not(
|
||||
index >= (T_all.unsqueeze(1))) & index_mask
|
||||
tail = torch.ones(T_all_max,
|
||||
dtype=input_lens.dtype,
|
||||
device=input_tensor.device).unsqueeze(0).repeat(B, 1) * (
|
||||
T_all_max - 1) # [B, T_all_max]
|
||||
indices = torch.where(torch.logical_or(index_mask, tail_index_mask),
|
||||
index, tail)
|
||||
input_tensor = torch.gather(input_tensor, 1, indices.unsqueeze(2).repeat(1, 1, D))
|
||||
|
||||
input_tensor = input_tensor.unfold(1, self.m, step=self.n).transpose(2, 3)
|
||||
|
||||
return input_tensor.reshape(B, -1, D * self.m), new_len
|
||||
|
||||
class WavFrontend():
|
||||
"""Conventional frontend structure for ASR.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cmvn_file: str = None,
|
||||
fs: int = 16000,
|
||||
window: str = 'hamming',
|
||||
n_mels: int = 80,
|
||||
frame_length: int = 25,
|
||||
frame_shift: int = 10,
|
||||
filter_length_min: int = -1,
|
||||
filter_length_max: float = -1,
|
||||
lfr_m: int = 7,
|
||||
lfr_n: int = 6,
|
||||
dither: float = 1.0
|
||||
) -> None:
|
||||
# check_argument_types()
|
||||
|
||||
self.fs = fs
|
||||
self.window = window
|
||||
self.n_mels = n_mels
|
||||
self.frame_length = frame_length
|
||||
self.frame_shift = frame_shift
|
||||
self.filter_length_min = filter_length_min
|
||||
self.filter_length_max = filter_length_max
|
||||
self.lfr_m = lfr_m
|
||||
self.lfr_n = lfr_n
|
||||
self.lfr = LFR(lfr_m, lfr_n)
|
||||
self.cmvn_file = cmvn_file
|
||||
self.dither = dither
|
||||
|
||||
if self.cmvn_file:
|
||||
self.cmvn = self.load_cmvn()
|
||||
|
||||
def apply_cmvn_batch(self, inputs: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Apply CMVN with mvn data
|
||||
"""
|
||||
batch, frame, dim = inputs.shape
|
||||
means = np.tile(self.cmvn[0:1, :dim], (frame, 1))
|
||||
vars = np.tile(self.cmvn[1:2, :dim], (frame, 1))
|
||||
|
||||
means = torch.from_numpy(means).to(inputs.device)
|
||||
vars = torch.from_numpy(vars).to(inputs.device)
|
||||
# print(inputs.shape, means.shape, vars.shape)
|
||||
inputs = (inputs + means) * vars
|
||||
return inputs
|
||||
|
||||
def load_cmvn(self,) -> np.ndarray:
|
||||
with open(self.cmvn_file, 'r', encoding='utf-8') as f:
|
||||
lines = f.readlines()
|
||||
|
||||
means_list = []
|
||||
vars_list = []
|
||||
for i in range(len(lines)):
|
||||
line_item = lines[i].split()
|
||||
if line_item[0] == '<AddShift>':
|
||||
line_item = lines[i + 1].split()
|
||||
if line_item[0] == '<LearnRateCoef>':
|
||||
add_shift_line = line_item[3:(len(line_item) - 1)]
|
||||
means_list = list(add_shift_line)
|
||||
continue
|
||||
elif line_item[0] == '<Rescale>':
|
||||
line_item = lines[i + 1].split()
|
||||
if line_item[0] == '<LearnRateCoef>':
|
||||
rescale_line = line_item[3:(len(line_item) - 1)]
|
||||
vars_list = list(rescale_line)
|
||||
continue
|
||||
|
||||
means = np.array(means_list).astype(np.float64)
|
||||
vars = np.array(vars_list).astype(np.float64)
|
||||
cmvn = np.array([means, vars])
|
||||
return cmvn
|
||||
|
||||
|
||||
class Fbank(torch.nn.Module):
|
||||
def __init__(self, opts):
|
||||
super(Fbank, self).__init__()
|
||||
self.fbank = kaldifeat.Fbank(opts)
|
||||
|
||||
def forward(self, waves: List[torch.Tensor]):
|
||||
return self.fbank(waves)
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Your Python model must use the same class name. Every Python model
|
||||
that is created must have "TritonPythonModel" as the class name.
|
||||
"""
|
||||
|
||||
def initialize(self, args):
|
||||
"""`initialize` is called only once when the model is being loaded.
|
||||
Implementing `initialize` function is optional. This function allows
|
||||
the model to initialize any state associated with this model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
args : dict
|
||||
Both keys and values are strings. The dictionary keys and values are:
|
||||
* model_config: A JSON string containing the model configuration
|
||||
* model_instance_kind: A string containing model instance kind
|
||||
* model_instance_device_id: A string containing model instance device ID
|
||||
* model_repository: Model repository path
|
||||
* model_version: Model version
|
||||
* model_name: Model name
|
||||
"""
|
||||
self.model_config = model_config = json.loads(args['model_config'])
|
||||
self.max_batch_size = max(model_config["max_batch_size"], 1)
|
||||
self.device = "cuda"
|
||||
|
||||
# Get OUTPUT0 configuration
|
||||
output0_config = pb_utils.get_output_config_by_name(
|
||||
model_config, "speech")
|
||||
# Convert Triton types to numpy types
|
||||
output0_dtype = pb_utils.triton_string_to_numpy(
|
||||
output0_config['data_type'])
|
||||
|
||||
if output0_dtype == np.float32:
|
||||
self.output0_dtype = torch.float32
|
||||
else:
|
||||
self.output0_dtype = torch.float16
|
||||
|
||||
# Get OUTPUT1 configuration
|
||||
output1_config = pb_utils.get_output_config_by_name(
|
||||
model_config, "speech_lengths")
|
||||
# Convert Triton types to numpy types
|
||||
self.output1_dtype = pb_utils.triton_string_to_numpy(
|
||||
output1_config['data_type'])
|
||||
|
||||
params = self.model_config['parameters']
|
||||
|
||||
for li in params.items():
|
||||
key, value = li
|
||||
value = value["string_value"]
|
||||
if key == "config_path":
|
||||
with open(str(value), 'rb') as f:
|
||||
config = yaml.load(f, Loader=yaml.Loader)
|
||||
if key == "cmvn_path":
|
||||
cmvn_path = str(value)
|
||||
|
||||
opts = kaldifeat.FbankOptions()
|
||||
opts.frame_opts.dither = 1.0 # TODO: 0.0 or 1.0
|
||||
opts.frame_opts.window_type = config['frontend_conf']['window']
|
||||
opts.mel_opts.num_bins = int(config['frontend_conf']['n_mels'])
|
||||
opts.frame_opts.frame_shift_ms = float(config['frontend_conf']['frame_shift'])
|
||||
opts.frame_opts.frame_length_ms = float(config['frontend_conf']['frame_length'])
|
||||
opts.frame_opts.samp_freq = int(config['frontend_conf']['fs'])
|
||||
opts.device = torch.device(self.device)
|
||||
self.opts = opts
|
||||
self.feature_extractor = Fbank(self.opts)
|
||||
self.feature_size = opts.mel_opts.num_bins
|
||||
|
||||
self.frontend = WavFrontend(
|
||||
cmvn_file=cmvn_path,
|
||||
**config['frontend_conf'])
|
||||
|
||||
def extract_feat(self,
|
||||
waveform_list: List[np.ndarray]
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
feats, feats_len = [], []
|
||||
wavs = []
|
||||
for waveform in waveform_list:
|
||||
wav = torch.from_numpy(waveform).float().squeeze().to(self.device)
|
||||
wavs.append(wav)
|
||||
|
||||
features = self.feature_extractor(wavs)
|
||||
features_len = [feature.shape[0] for feature in features]
|
||||
speech = torch.zeros((len(features), max(features_len), self.opts.mel_opts.num_bins),
|
||||
dtype=self.output0_dtype, device=self.device)
|
||||
for i, feature in enumerate(features):
|
||||
speech[i,:int(features_len[i])] = feature
|
||||
speech_lens = torch.tensor(features_len,dtype=torch.int64).to(self.device)
|
||||
|
||||
feats, feats_len = self.frontend.lfr(speech, speech_lens)
|
||||
feats_len = feats_len.type(torch.int32)
|
||||
|
||||
feats = self.frontend.apply_cmvn_batch(feats)
|
||||
feats = feats.type(self.output0_dtype)
|
||||
|
||||
return feats, feats_len
|
||||
|
||||
def execute(self, requests):
|
||||
"""`execute` must be implemented in every Python model. `execute`
|
||||
function receives a list of pb_utils.InferenceRequest as the only
|
||||
argument. This function is called when an inference is requested
|
||||
for this model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
requests : list
|
||||
A list of pb_utils.InferenceRequest
|
||||
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
A list of pb_utils.InferenceResponse. The length of this list must
|
||||
be the same as `requests`
|
||||
"""
|
||||
batch_count = []
|
||||
total_waves = []
|
||||
batch_len = []
|
||||
responses = []
|
||||
for request in requests:
|
||||
|
||||
input0 = pb_utils.get_input_tensor_by_name(request, "wav")
|
||||
input1 = pb_utils.get_input_tensor_by_name(request, "wav_lens")
|
||||
|
||||
cur_b_wav = input0.as_numpy() * (1 << 15) # b x -1
|
||||
total_waves.append(cur_b_wav)
|
||||
|
||||
features, feats_len = self.extract_feat(total_waves)
|
||||
|
||||
for i in range(features.shape[0]):
|
||||
speech = features[i:i+1][:int(feats_len[i].cpu())]
|
||||
speech_lengths = feats_len[i].unsqueeze(0).unsqueeze(0)
|
||||
|
||||
speech, speech_lengths = speech.cpu(), speech_lengths.cpu()
|
||||
out0 = pb_utils.Tensor.from_dlpack("speech", to_dlpack(speech))
|
||||
out1 = pb_utils.Tensor.from_dlpack("speech_lengths",
|
||||
to_dlpack(speech_lengths))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[out0, out1])
|
||||
responses.append(inference_response)
|
||||
return responses
|
||||
@@ -0,0 +1,81 @@
|
||||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: "feature_extractor"
|
||||
backend: "python"
|
||||
max_batch_size: 64
|
||||
|
||||
parameters [
|
||||
{
|
||||
key: "num_mel_bins",
|
||||
value: { string_value: "80"}
|
||||
},
|
||||
{
|
||||
key: "frame_shift_in_ms"
|
||||
value: { string_value: "10"}
|
||||
},
|
||||
{
|
||||
key: "frame_length_in_ms"
|
||||
value: { string_value: "25"}
|
||||
},
|
||||
{
|
||||
key: "sample_rate"
|
||||
value: { string_value: "16000"}
|
||||
},
|
||||
{
|
||||
key: "cmvn_path"
|
||||
value: { string_value: "./model_repo_paraformer_large_offline/feature_extractor/am.mvn"}
|
||||
},
|
||||
{
|
||||
key: "config_path"
|
||||
value: { string_value: "./model_repo_paraformer_large_offline/feature_extractor/config.yaml"}
|
||||
}
|
||||
|
||||
]
|
||||
|
||||
input [
|
||||
{
|
||||
name: "wav"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1]
|
||||
},
|
||||
{
|
||||
name: "wav_lens"
|
||||
data_type: TYPE_INT32
|
||||
dims: [1]
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "speech"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1, 560] # 80
|
||||
},
|
||||
{
|
||||
name: "speech_lengths"
|
||||
data_type: TYPE_INT32
|
||||
dims: [1]
|
||||
}
|
||||
]
|
||||
|
||||
dynamic_batching {
|
||||
}
|
||||
|
||||
instance_group [
|
||||
{
|
||||
count: 2
|
||||
kind: KIND_GPU
|
||||
}
|
||||
]
|
||||
@@ -0,0 +1,99 @@
|
||||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: "infer_pipeline"
|
||||
platform: "ensemble"
|
||||
max_batch_size: 64 #MAX_BATCH
|
||||
|
||||
input [
|
||||
{
|
||||
name: "WAV"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1]
|
||||
},
|
||||
{
|
||||
name: "WAV_LENS"
|
||||
data_type: TYPE_INT32
|
||||
dims: [1]
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "TRANSCRIPTS"
|
||||
data_type: TYPE_STRING
|
||||
dims: [1]
|
||||
}
|
||||
]
|
||||
|
||||
ensemble_scheduling {
|
||||
step [
|
||||
{
|
||||
model_name: "feature_extractor"
|
||||
model_version: -1
|
||||
input_map {
|
||||
key: "wav"
|
||||
value: "WAV"
|
||||
}
|
||||
input_map {
|
||||
key: "wav_lens"
|
||||
value: "WAV_LENS"
|
||||
}
|
||||
output_map {
|
||||
key: "speech"
|
||||
value: "SPEECH"
|
||||
}
|
||||
output_map {
|
||||
key: "speech_lengths"
|
||||
value: "SPEECH_LENGTHS"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "encoder"
|
||||
model_version: -1
|
||||
input_map {
|
||||
key: "speech"
|
||||
value: "SPEECH"
|
||||
}
|
||||
input_map {
|
||||
key: "speech_lengths"
|
||||
value: "SPEECH_LENGTHS"
|
||||
}
|
||||
output_map {
|
||||
key: "logits"
|
||||
value: "logits"
|
||||
}
|
||||
output_map {
|
||||
key: "token_num"
|
||||
value: "token_num"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "scoring"
|
||||
model_version: -1
|
||||
input_map {
|
||||
key: "logits"
|
||||
value: "logits"
|
||||
}
|
||||
input_map {
|
||||
key: "token_num"
|
||||
value: "token_num"
|
||||
}
|
||||
output_map {
|
||||
key: "OUTPUT0"
|
||||
value: "TRANSCRIPTS"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -0,0 +1,149 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import triton_python_backend_utils as pb_utils
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.dlpack import from_dlpack
|
||||
|
||||
import json
|
||||
import os
|
||||
import yaml
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Your Python model must use the same class name. Every Python model
|
||||
that is created must have "TritonPythonModel" as the class name.
|
||||
"""
|
||||
|
||||
def initialize(self, args):
|
||||
"""`initialize` is called only once when the model is being loaded.
|
||||
Implementing `initialize` function is optional. This function allows
|
||||
the model to initialize any state associated with this model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
args : dict
|
||||
Both keys and values are strings. The dictionary keys and values are:
|
||||
* model_config: A JSON string containing the model configuration
|
||||
* model_instance_kind: A string containing model instance kind
|
||||
* model_instance_device_id: A string containing model instance device ID
|
||||
* model_repository: Model repository path
|
||||
* model_version: Model version
|
||||
* model_name: Model name
|
||||
"""
|
||||
self.model_config = model_config = json.loads(args['model_config'])
|
||||
self.max_batch_size = max(model_config["max_batch_size"], 1)
|
||||
|
||||
# # Get OUTPUT0 configuration
|
||||
output0_config = pb_utils.get_output_config_by_name(
|
||||
model_config, "OUTPUT0")
|
||||
# # Convert Triton types to numpy types
|
||||
self.out0_dtype = pb_utils.triton_string_to_numpy(
|
||||
output0_config['data_type'])
|
||||
|
||||
self.init_vocab(self.model_config['parameters'])
|
||||
|
||||
def init_vocab(self, parameters):
|
||||
blank_id=0
|
||||
for li in parameters.items():
|
||||
key, value = li
|
||||
value = value["string_value"]
|
||||
if key == "blank_id":
|
||||
self.blank_id = int(value)
|
||||
elif key == "lm_path":
|
||||
lm_path = value
|
||||
elif key == "vocabulary":
|
||||
self.vocab_dict = self.load_vocab(value)
|
||||
if key == 'ignore_id':
|
||||
ignore_id = int(value)
|
||||
|
||||
def load_vocab(self, vocab_file):
|
||||
"""
|
||||
load lang_char.txt
|
||||
"""
|
||||
with open(str(vocab_file), 'rb') as f:
|
||||
config = yaml.load(f, Loader=yaml.Loader)
|
||||
return config['token_list']
|
||||
|
||||
def execute(self, requests):
|
||||
"""`execute` must be implemented in every Python model. `execute`
|
||||
function receives a list of pb_utils.InferenceRequest as the only
|
||||
argument. This function is called when an inference is requested
|
||||
for this model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
requests : list
|
||||
A list of pb_utils.InferenceRequest
|
||||
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
A list of pb_utils.InferenceResponse. The length of this list must
|
||||
be the same as `requests`
|
||||
"""
|
||||
# Every Python backend must iterate through list of requests and create
|
||||
# an instance of pb_utils.InferenceResponse class for each of them. You
|
||||
# should avoid storing any of the input Tensors in the class attributes
|
||||
# as they will be overridden in subsequent inference requests. You can
|
||||
# make a copy of the underlying NumPy array and store it if it is
|
||||
# required.
|
||||
|
||||
total_seq, max_token_num = 0, 0
|
||||
assert len(self.vocab_dict) == 8404, len(self.vocab_dict)
|
||||
logits_list, token_num_list = [], []
|
||||
|
||||
for request in requests:
|
||||
# Perform inference on the request and append it to responses list...
|
||||
in_0 = pb_utils.get_input_tensor_by_name(request, "logits")
|
||||
in_1 = pb_utils.get_input_tensor_by_name(request, "token_num")
|
||||
|
||||
logits, token_num = from_dlpack(in_0.to_dlpack()), from_dlpack(in_1.to_dlpack()).cpu()
|
||||
max_token_num = max(max_token_num, token_num)
|
||||
|
||||
assert logits.shape[0] == 1
|
||||
logits_list.append(logits)
|
||||
token_num_list.append(token_num)
|
||||
total_seq +=1
|
||||
|
||||
logits_batch = torch.zeros(len(logits_list), max_token_num, len(self.vocab_dict), dtype=torch.float32, device=logits.device)
|
||||
token_num_batch = torch.zeros(len(logits_list))
|
||||
|
||||
for i, (logits, token_num) in enumerate(zip(logits_list, token_num_list)):
|
||||
logits_batch[i][:int(token_num)] = logits[0][:int(token_num)]
|
||||
token_num_batch[i] = token_num
|
||||
|
||||
yseq_batch = logits_batch.argmax(axis=-1).tolist()
|
||||
token_int_batch = [list(filter(lambda x: x not in (0, 2), yseq)) for yseq in yseq_batch]
|
||||
|
||||
tokens_batch = [[self.vocab_dict[i] for i in token_int] for token_int in token_int_batch]
|
||||
|
||||
hyps = [u"".join([t if t != "<space>" else " " for t in tokens]).encode('utf-8') for tokens in tokens_batch]
|
||||
responses = []
|
||||
for i in range(total_seq):
|
||||
sents = np.array(hyps[i:i+1])
|
||||
out0 = pb_utils.Tensor("OUTPUT0", sents.astype(self.out0_dtype))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[out0])
|
||||
responses.append(inference_response)
|
||||
|
||||
return responses
|
||||
|
||||
def finalize(self):
|
||||
"""`finalize` is called only once when the model is being unloaded.
|
||||
Implementing `finalize` function is optional. This function allows
|
||||
the model to perform any necessary clean ups before exit.
|
||||
"""
|
||||
print('Cleaning up...')
|
||||
@@ -0,0 +1,67 @@
|
||||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: "scoring"
|
||||
backend: "python"
|
||||
max_batch_size: 64
|
||||
|
||||
parameters [
|
||||
{
|
||||
key: "ignore_id",
|
||||
value: { string_value: "-1"}
|
||||
},
|
||||
{
|
||||
key: "vocabulary",
|
||||
value: { string_value: "./model_repo_paraformer_large_offline/feature_extractor/config.yaml"}
|
||||
},
|
||||
{
|
||||
key: "lm_path"
|
||||
value: { string_value: "#lm_path"}
|
||||
},
|
||||
{ key: "FORCE_CPU_ONLY_INPUT_TENSORS"
|
||||
value: {string_value:"no"}
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
input [
|
||||
{
|
||||
name: "logits"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1, 8404]
|
||||
},
|
||||
{
|
||||
name: "token_num"
|
||||
data_type: TYPE_INT32
|
||||
dims: [1]
|
||||
reshape: { shape: [ ] }
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "OUTPUT0"
|
||||
data_type: TYPE_STRING
|
||||
dims: [1]
|
||||
}
|
||||
]
|
||||
|
||||
dynamic_batching {
|
||||
}
|
||||
instance_group [
|
||||
{
|
||||
count: 2
|
||||
kind: KIND_CPU
|
||||
}
|
||||
]
|
||||
Reference in New Issue
Block a user