mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
282
funasr_local/runtime/python/onnxruntime/funasr_onnx/vad_bin.py
Normal file
282
funasr_local/runtime/python/onnxruntime/funasr_onnx/vad_bin.py
Normal file
@@ -0,0 +1,282 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||||
# MIT License (https://opensource.org/licenses/MIT)
|
||||
|
||||
import os.path
|
||||
from pathlib import Path
|
||||
from typing import List, Union, Tuple
|
||||
|
||||
import copy
|
||||
import librosa
|
||||
import numpy as np
|
||||
|
||||
from .utils.utils import (ONNXRuntimeError,
|
||||
OrtInferSession, get_logger,
|
||||
read_yaml)
|
||||
from .utils.frontend import WavFrontend, WavFrontendOnline
|
||||
from .utils.e2e_vad import E2EVadModel
|
||||
|
||||
logging = get_logger()
|
||||
|
||||
|
||||
class Fsmn_vad():
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
|
||||
https://arxiv.org/abs/1803.05030
|
||||
"""
|
||||
def __init__(self, model_dir: Union[str, Path] = None,
|
||||
batch_size: int = 1,
|
||||
device_id: Union[str, int] = "-1",
|
||||
quantize: bool = False,
|
||||
intra_op_num_threads: int = 4,
|
||||
max_end_sil: int = None,
|
||||
):
|
||||
|
||||
if not Path(model_dir).exists():
|
||||
raise FileNotFoundError(f'{model_dir} does not exist.')
|
||||
|
||||
model_file = os.path.join(model_dir, 'model.onnx')
|
||||
if quantize:
|
||||
model_file = os.path.join(model_dir, 'model_quant.onnx')
|
||||
config_file = os.path.join(model_dir, 'vad.yaml')
|
||||
cmvn_file = os.path.join(model_dir, 'vad.mvn')
|
||||
config = read_yaml(config_file)
|
||||
|
||||
self.frontend = WavFrontend(
|
||||
cmvn_file=cmvn_file,
|
||||
**config['frontend_conf']
|
||||
)
|
||||
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
|
||||
self.batch_size = batch_size
|
||||
self.vad_scorer = E2EVadModel(config["vad_post_conf"])
|
||||
self.max_end_sil = max_end_sil if max_end_sil is not None else config["vad_post_conf"]["max_end_silence_time"]
|
||||
self.encoder_conf = config["encoder_conf"]
|
||||
|
||||
def prepare_cache(self, in_cache: list = []):
|
||||
if len(in_cache) > 0:
|
||||
return in_cache
|
||||
fsmn_layers = self.encoder_conf["fsmn_layers"]
|
||||
proj_dim = self.encoder_conf["proj_dim"]
|
||||
lorder = self.encoder_conf["lorder"]
|
||||
for i in range(fsmn_layers):
|
||||
cache = np.zeros((1, proj_dim, lorder-1, 1)).astype(np.float32)
|
||||
in_cache.append(cache)
|
||||
return in_cache
|
||||
|
||||
|
||||
def __call__(self, audio_in: Union[str, np.ndarray, List[str]], **kwargs) -> List:
|
||||
waveform_list = self.load_data(audio_in, self.frontend.opts.frame_opts.samp_freq)
|
||||
waveform_nums = len(waveform_list)
|
||||
is_final = kwargs.get('kwargs', False)
|
||||
|
||||
segments = [[]] * self.batch_size
|
||||
for beg_idx in range(0, waveform_nums, self.batch_size):
|
||||
|
||||
end_idx = min(waveform_nums, beg_idx + self.batch_size)
|
||||
waveform = waveform_list[beg_idx:end_idx]
|
||||
feats, feats_len = self.extract_feat(waveform)
|
||||
waveform = np.array(waveform)
|
||||
param_dict = kwargs.get('param_dict', dict())
|
||||
in_cache = param_dict.get('in_cache', list())
|
||||
in_cache = self.prepare_cache(in_cache)
|
||||
try:
|
||||
t_offset = 0
|
||||
step = int(min(feats_len.max(), 6000))
|
||||
for t_offset in range(0, int(feats_len), min(step, feats_len - t_offset)):
|
||||
if t_offset + step >= feats_len - 1:
|
||||
step = feats_len - t_offset
|
||||
is_final = True
|
||||
else:
|
||||
is_final = False
|
||||
feats_package = feats[:, t_offset:int(t_offset + step), :]
|
||||
waveform_package = waveform[:, t_offset * 160:min(waveform.shape[-1], (int(t_offset + step) - 1) * 160 + 400)]
|
||||
|
||||
inputs = [feats_package]
|
||||
# inputs = [feats]
|
||||
inputs.extend(in_cache)
|
||||
scores, out_caches = self.infer(inputs)
|
||||
in_cache = out_caches
|
||||
segments_part = self.vad_scorer(scores, waveform_package, is_final=is_final, max_end_sil=self.max_end_sil, online=False)
|
||||
# segments = self.vad_scorer(scores, waveform[0][None, :], is_final=is_final, max_end_sil=self.max_end_sil)
|
||||
|
||||
if segments_part:
|
||||
for batch_num in range(0, self.batch_size):
|
||||
segments[batch_num] += segments_part[batch_num]
|
||||
|
||||
except ONNXRuntimeError:
|
||||
# logging.warning(traceback.format_exc())
|
||||
logging.warning("input wav is silence or noise")
|
||||
segments = ''
|
||||
|
||||
return segments
|
||||
|
||||
def load_data(self,
|
||||
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
|
||||
def load_wav(path: str) -> np.ndarray:
|
||||
waveform, _ = librosa.load(path, sr=fs)
|
||||
return waveform
|
||||
|
||||
if isinstance(wav_content, np.ndarray):
|
||||
return [wav_content]
|
||||
|
||||
if isinstance(wav_content, str):
|
||||
return [load_wav(wav_content)]
|
||||
|
||||
if isinstance(wav_content, list):
|
||||
return [load_wav(path) for path in wav_content]
|
||||
|
||||
raise TypeError(
|
||||
f'The type of {wav_content} is not in [str, np.ndarray, list]')
|
||||
|
||||
def extract_feat(self,
|
||||
waveform_list: List[np.ndarray]
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
feats, feats_len = [], []
|
||||
for waveform in waveform_list:
|
||||
speech, _ = self.frontend.fbank(waveform)
|
||||
feat, feat_len = self.frontend.lfr_cmvn(speech)
|
||||
feats.append(feat)
|
||||
feats_len.append(feat_len)
|
||||
|
||||
feats = self.pad_feats(feats, np.max(feats_len))
|
||||
feats_len = np.array(feats_len).astype(np.int32)
|
||||
return feats, feats_len
|
||||
|
||||
@staticmethod
|
||||
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
|
||||
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
|
||||
pad_width = ((0, max_feat_len - cur_len), (0, 0))
|
||||
return np.pad(feat, pad_width, 'constant', constant_values=0)
|
||||
|
||||
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
|
||||
feats = np.array(feat_res).astype(np.float32)
|
||||
return feats
|
||||
|
||||
def infer(self, feats: List) -> Tuple[np.ndarray, np.ndarray]:
|
||||
|
||||
outputs = self.ort_infer(feats)
|
||||
scores, out_caches = outputs[0], outputs[1:]
|
||||
return scores, out_caches
|
||||
|
||||
|
||||
class Fsmn_vad_online():
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
|
||||
https://arxiv.org/abs/1803.05030
|
||||
"""
|
||||
def __init__(self, model_dir: Union[str, Path] = None,
|
||||
batch_size: int = 1,
|
||||
device_id: Union[str, int] = "-1",
|
||||
quantize: bool = False,
|
||||
intra_op_num_threads: int = 4,
|
||||
max_end_sil: int = None,
|
||||
):
|
||||
|
||||
if not Path(model_dir).exists():
|
||||
raise FileNotFoundError(f'{model_dir} does not exist.')
|
||||
|
||||
model_file = os.path.join(model_dir, 'model.onnx')
|
||||
if quantize:
|
||||
model_file = os.path.join(model_dir, 'model_quant.onnx')
|
||||
config_file = os.path.join(model_dir, 'vad.yaml')
|
||||
cmvn_file = os.path.join(model_dir, 'vad.mvn')
|
||||
config = read_yaml(config_file)
|
||||
|
||||
self.frontend = WavFrontendOnline(
|
||||
cmvn_file=cmvn_file,
|
||||
**config['frontend_conf']
|
||||
)
|
||||
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
|
||||
self.batch_size = batch_size
|
||||
self.vad_scorer = E2EVadModel(config["vad_post_conf"])
|
||||
self.max_end_sil = max_end_sil if max_end_sil is not None else config["vad_post_conf"]["max_end_silence_time"]
|
||||
self.encoder_conf = config["encoder_conf"]
|
||||
|
||||
def prepare_cache(self, in_cache: list = []):
|
||||
if len(in_cache) > 0:
|
||||
return in_cache
|
||||
fsmn_layers = self.encoder_conf["fsmn_layers"]
|
||||
proj_dim = self.encoder_conf["proj_dim"]
|
||||
lorder = self.encoder_conf["lorder"]
|
||||
for i in range(fsmn_layers):
|
||||
cache = np.zeros((1, proj_dim, lorder - 1, 1)).astype(np.float32)
|
||||
in_cache.append(cache)
|
||||
return in_cache
|
||||
|
||||
def __call__(self, audio_in: np.ndarray, **kwargs) -> List:
|
||||
waveforms = np.expand_dims(audio_in, axis=0)
|
||||
|
||||
param_dict = kwargs.get('param_dict', dict())
|
||||
is_final = param_dict.get('is_final', False)
|
||||
feats, feats_len = self.extract_feat(waveforms, is_final)
|
||||
segments = []
|
||||
if feats.size != 0:
|
||||
in_cache = param_dict.get('in_cache', list())
|
||||
in_cache = self.prepare_cache(in_cache)
|
||||
try:
|
||||
inputs = [feats]
|
||||
inputs.extend(in_cache)
|
||||
scores, out_caches = self.infer(inputs)
|
||||
param_dict['in_cache'] = out_caches
|
||||
waveforms = self.frontend.get_waveforms()
|
||||
segments = self.vad_scorer(scores, waveforms, is_final=is_final, max_end_sil=self.max_end_sil,
|
||||
online=True)
|
||||
|
||||
|
||||
except ONNXRuntimeError:
|
||||
# logging.warning(traceback.format_exc())
|
||||
logging.warning("input wav is silence or noise")
|
||||
segments = []
|
||||
return segments
|
||||
|
||||
def load_data(self,
|
||||
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
|
||||
def load_wav(path: str) -> np.ndarray:
|
||||
waveform, _ = librosa.load(path, sr=fs)
|
||||
return waveform
|
||||
|
||||
if isinstance(wav_content, np.ndarray):
|
||||
return [wav_content]
|
||||
|
||||
if isinstance(wav_content, str):
|
||||
return [load_wav(wav_content)]
|
||||
|
||||
if isinstance(wav_content, list):
|
||||
return [load_wav(path) for path in wav_content]
|
||||
|
||||
raise TypeError(
|
||||
f'The type of {wav_content} is not in [str, np.ndarray, list]')
|
||||
|
||||
def extract_feat(self,
|
||||
waveforms: np.ndarray, is_final: bool = False
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
waveforms_lens = np.zeros(waveforms.shape[0]).astype(np.int32)
|
||||
for idx, waveform in enumerate(waveforms):
|
||||
waveforms_lens[idx] = waveform.shape[-1]
|
||||
|
||||
feats, feats_len = self.frontend.extract_fbank(waveforms, waveforms_lens, is_final)
|
||||
# feats.append(feat)
|
||||
# feats_len.append(feat_len)
|
||||
|
||||
# feats = self.pad_feats(feats, np.max(feats_len))
|
||||
# feats_len = np.array(feats_len).astype(np.int32)
|
||||
return feats.astype(np.float32), feats_len.astype(np.int32)
|
||||
|
||||
@staticmethod
|
||||
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
|
||||
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
|
||||
pad_width = ((0, max_feat_len - cur_len), (0, 0))
|
||||
return np.pad(feat, pad_width, 'constant', constant_values=0)
|
||||
|
||||
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
|
||||
feats = np.array(feat_res).astype(np.float32)
|
||||
return feats
|
||||
|
||||
def infer(self, feats: List) -> Tuple[np.ndarray, np.ndarray]:
|
||||
|
||||
outputs = self.ort_infer(feats)
|
||||
scores, out_caches = outputs[0], outputs[1:]
|
||||
return scores, out_caches
|
||||
|
||||
Reference in New Issue
Block a user