mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
261
funasr_local/runtime/python/onnxruntime/funasr_onnx/punc_bin.py
Normal file
261
funasr_local/runtime/python/onnxruntime/funasr_onnx/punc_bin.py
Normal file
@@ -0,0 +1,261 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||||
# MIT License (https://opensource.org/licenses/MIT)
|
||||
|
||||
import os.path
|
||||
from pathlib import Path
|
||||
from typing import List, Union, Tuple
|
||||
import numpy as np
|
||||
|
||||
from .utils.utils import (ONNXRuntimeError,
|
||||
OrtInferSession, get_logger,
|
||||
read_yaml)
|
||||
from .utils.utils import (TokenIDConverter, split_to_mini_sentence,code_mix_split_words)
|
||||
logging = get_logger()
|
||||
|
||||
|
||||
class CT_Transformer():
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection
|
||||
https://arxiv.org/pdf/2003.01309.pdf
|
||||
"""
|
||||
def __init__(self, model_dir: Union[str, Path] = None,
|
||||
batch_size: int = 1,
|
||||
device_id: Union[str, int] = "-1",
|
||||
quantize: bool = False,
|
||||
intra_op_num_threads: int = 4
|
||||
):
|
||||
|
||||
if not Path(model_dir).exists():
|
||||
raise FileNotFoundError(f'{model_dir} does not exist.')
|
||||
|
||||
model_file = os.path.join(model_dir, 'model.onnx')
|
||||
if quantize:
|
||||
model_file = os.path.join(model_dir, 'model_quant.onnx')
|
||||
config_file = os.path.join(model_dir, 'punc.yaml')
|
||||
config = read_yaml(config_file)
|
||||
|
||||
self.converter = TokenIDConverter(config['token_list'])
|
||||
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
|
||||
self.batch_size = 1
|
||||
self.punc_list = config['punc_list']
|
||||
self.period = 0
|
||||
for i in range(len(self.punc_list)):
|
||||
if self.punc_list[i] == ",":
|
||||
self.punc_list[i] = ","
|
||||
elif self.punc_list[i] == "?":
|
||||
self.punc_list[i] = "?"
|
||||
elif self.punc_list[i] == "。":
|
||||
self.period = i
|
||||
|
||||
def __call__(self, text: Union[list, str], split_size=20):
|
||||
split_text = code_mix_split_words(text)
|
||||
split_text_id = self.converter.tokens2ids(split_text)
|
||||
mini_sentences = split_to_mini_sentence(split_text, split_size)
|
||||
mini_sentences_id = split_to_mini_sentence(split_text_id, split_size)
|
||||
assert len(mini_sentences) == len(mini_sentences_id)
|
||||
cache_sent = []
|
||||
cache_sent_id = []
|
||||
new_mini_sentence = ""
|
||||
new_mini_sentence_punc = []
|
||||
cache_pop_trigger_limit = 200
|
||||
for mini_sentence_i in range(len(mini_sentences)):
|
||||
mini_sentence = mini_sentences[mini_sentence_i]
|
||||
mini_sentence_id = mini_sentences_id[mini_sentence_i]
|
||||
mini_sentence = cache_sent + mini_sentence
|
||||
mini_sentence_id = np.array(cache_sent_id + mini_sentence_id, dtype='int64')
|
||||
data = {
|
||||
"text": mini_sentence_id[None,:],
|
||||
"text_lengths": np.array([len(mini_sentence_id)], dtype='int32'),
|
||||
}
|
||||
try:
|
||||
outputs = self.infer(data['text'], data['text_lengths'])
|
||||
y = outputs[0]
|
||||
punctuations = np.argmax(y,axis=-1)[0]
|
||||
assert punctuations.size == len(mini_sentence)
|
||||
except ONNXRuntimeError:
|
||||
logging.warning("error")
|
||||
|
||||
# Search for the last Period/QuestionMark as cache
|
||||
if mini_sentence_i < len(mini_sentences) - 1:
|
||||
sentenceEnd = -1
|
||||
last_comma_index = -1
|
||||
for i in range(len(punctuations) - 2, 1, -1):
|
||||
if self.punc_list[punctuations[i]] == "。" or self.punc_list[punctuations[i]] == "?":
|
||||
sentenceEnd = i
|
||||
break
|
||||
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
|
||||
last_comma_index = i
|
||||
|
||||
if sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0:
|
||||
# The sentence it too long, cut off at a comma.
|
||||
sentenceEnd = last_comma_index
|
||||
punctuations[sentenceEnd] = self.period
|
||||
cache_sent = mini_sentence[sentenceEnd + 1:]
|
||||
cache_sent_id = mini_sentence_id[sentenceEnd + 1:].tolist()
|
||||
mini_sentence = mini_sentence[0:sentenceEnd + 1]
|
||||
punctuations = punctuations[0:sentenceEnd + 1]
|
||||
|
||||
new_mini_sentence_punc += [int(x) for x in punctuations]
|
||||
words_with_punc = []
|
||||
for i in range(len(mini_sentence)):
|
||||
if i > 0:
|
||||
if len(mini_sentence[i][0].encode()) == 1 and len(mini_sentence[i - 1][0].encode()) == 1:
|
||||
mini_sentence[i] = " " + mini_sentence[i]
|
||||
words_with_punc.append(mini_sentence[i])
|
||||
if self.punc_list[punctuations[i]] != "_":
|
||||
words_with_punc.append(self.punc_list[punctuations[i]])
|
||||
new_mini_sentence += "".join(words_with_punc)
|
||||
# Add Period for the end of the sentence
|
||||
new_mini_sentence_out = new_mini_sentence
|
||||
new_mini_sentence_punc_out = new_mini_sentence_punc
|
||||
if mini_sentence_i == len(mini_sentences) - 1:
|
||||
if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、":
|
||||
new_mini_sentence_out = new_mini_sentence[:-1] + "。"
|
||||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
||||
elif new_mini_sentence[-1] != "。" and new_mini_sentence[-1] != "?":
|
||||
new_mini_sentence_out = new_mini_sentence + "。"
|
||||
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
|
||||
return new_mini_sentence_out, new_mini_sentence_punc_out
|
||||
|
||||
def infer(self, feats: np.ndarray,
|
||||
feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
outputs = self.ort_infer([feats, feats_len])
|
||||
return outputs
|
||||
|
||||
|
||||
class CT_Transformer_VadRealtime(CT_Transformer):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection
|
||||
https://arxiv.org/pdf/2003.01309.pdf
|
||||
"""
|
||||
def __init__(self, model_dir: Union[str, Path] = None,
|
||||
batch_size: int = 1,
|
||||
device_id: Union[str, int] = "-1",
|
||||
quantize: bool = False,
|
||||
intra_op_num_threads: int = 4
|
||||
):
|
||||
super(CT_Transformer_VadRealtime, self).__init__(model_dir, batch_size, device_id, quantize, intra_op_num_threads)
|
||||
|
||||
def __call__(self, text: str, param_dict: map, split_size=20):
|
||||
cache_key = "cache"
|
||||
assert cache_key in param_dict
|
||||
cache = param_dict[cache_key]
|
||||
if cache is not None and len(cache) > 0:
|
||||
precache = "".join(cache)
|
||||
else:
|
||||
precache = ""
|
||||
cache = []
|
||||
full_text = precache + text
|
||||
split_text = code_mix_split_words(full_text)
|
||||
split_text_id = self.converter.tokens2ids(split_text)
|
||||
mini_sentences = split_to_mini_sentence(split_text, split_size)
|
||||
mini_sentences_id = split_to_mini_sentence(split_text_id, split_size)
|
||||
new_mini_sentence_punc = []
|
||||
assert len(mini_sentences) == len(mini_sentences_id)
|
||||
|
||||
cache_sent = []
|
||||
cache_sent_id = np.array([], dtype='int32')
|
||||
sentence_punc_list = []
|
||||
sentence_words_list = []
|
||||
cache_pop_trigger_limit = 200
|
||||
skip_num = 0
|
||||
for mini_sentence_i in range(len(mini_sentences)):
|
||||
mini_sentence = mini_sentences[mini_sentence_i]
|
||||
mini_sentence_id = mini_sentences_id[mini_sentence_i]
|
||||
mini_sentence = cache_sent + mini_sentence
|
||||
mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0)
|
||||
text_length = len(mini_sentence_id)
|
||||
data = {
|
||||
"input": mini_sentence_id[None,:],
|
||||
"text_lengths": np.array([text_length], dtype='int32'),
|
||||
"vad_mask": self.vad_mask(text_length, len(cache))[None, None, :, :].astype(np.float32),
|
||||
"sub_masks": np.tril(np.ones((text_length, text_length), dtype=np.float32))[None, None, :, :].astype(np.float32)
|
||||
}
|
||||
try:
|
||||
outputs = self.infer(data['input'], data['text_lengths'], data['vad_mask'], data["sub_masks"])
|
||||
y = outputs[0]
|
||||
punctuations = np.argmax(y,axis=-1)[0]
|
||||
assert punctuations.size == len(mini_sentence)
|
||||
except ONNXRuntimeError:
|
||||
logging.warning("error")
|
||||
|
||||
# Search for the last Period/QuestionMark as cache
|
||||
if mini_sentence_i < len(mini_sentences) - 1:
|
||||
sentenceEnd = -1
|
||||
last_comma_index = -1
|
||||
for i in range(len(punctuations) - 2, 1, -1):
|
||||
if self.punc_list[punctuations[i]] == "。" or self.punc_list[punctuations[i]] == "?":
|
||||
sentenceEnd = i
|
||||
break
|
||||
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
|
||||
last_comma_index = i
|
||||
|
||||
if sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0:
|
||||
# The sentence it too long, cut off at a comma.
|
||||
sentenceEnd = last_comma_index
|
||||
punctuations[sentenceEnd] = self.period
|
||||
cache_sent = mini_sentence[sentenceEnd + 1:]
|
||||
cache_sent_id = mini_sentence_id[sentenceEnd + 1:]
|
||||
mini_sentence = mini_sentence[0:sentenceEnd + 1]
|
||||
punctuations = punctuations[0:sentenceEnd + 1]
|
||||
|
||||
punctuations_np = [int(x) for x in punctuations]
|
||||
new_mini_sentence_punc += punctuations_np
|
||||
sentence_punc_list += [self.punc_list[int(x)] for x in punctuations_np]
|
||||
sentence_words_list += mini_sentence
|
||||
|
||||
assert len(sentence_punc_list) == len(sentence_words_list)
|
||||
words_with_punc = []
|
||||
sentence_punc_list_out = []
|
||||
for i in range(0, len(sentence_words_list)):
|
||||
if i > 0:
|
||||
if len(sentence_words_list[i][0].encode()) == 1 and len(sentence_words_list[i - 1][-1].encode()) == 1:
|
||||
sentence_words_list[i] = " " + sentence_words_list[i]
|
||||
if skip_num < len(cache):
|
||||
skip_num += 1
|
||||
else:
|
||||
words_with_punc.append(sentence_words_list[i])
|
||||
if skip_num >= len(cache):
|
||||
sentence_punc_list_out.append(sentence_punc_list[i])
|
||||
if sentence_punc_list[i] != "_":
|
||||
words_with_punc.append(sentence_punc_list[i])
|
||||
sentence_out = "".join(words_with_punc)
|
||||
|
||||
sentenceEnd = -1
|
||||
for i in range(len(sentence_punc_list) - 2, 1, -1):
|
||||
if sentence_punc_list[i] == "。" or sentence_punc_list[i] == "?":
|
||||
sentenceEnd = i
|
||||
break
|
||||
cache_out = sentence_words_list[sentenceEnd + 1:]
|
||||
if sentence_out[-1] in self.punc_list:
|
||||
sentence_out = sentence_out[:-1]
|
||||
sentence_punc_list_out[-1] = "_"
|
||||
param_dict[cache_key] = cache_out
|
||||
return sentence_out, sentence_punc_list_out, cache_out
|
||||
|
||||
def vad_mask(self, size, vad_pos, dtype=np.bool):
|
||||
"""Create mask for decoder self-attention.
|
||||
|
||||
:param int size: size of mask
|
||||
:param int vad_pos: index of vad index
|
||||
:param torch.dtype dtype: result dtype
|
||||
:rtype: torch.Tensor (B, Lmax, Lmax)
|
||||
"""
|
||||
ret = np.ones((size, size), dtype=dtype)
|
||||
if vad_pos <= 0 or vad_pos >= size:
|
||||
return ret
|
||||
sub_corner = np.zeros(
|
||||
(vad_pos - 1, size - vad_pos), dtype=dtype)
|
||||
ret[0:vad_pos - 1, vad_pos:] = sub_corner
|
||||
return ret
|
||||
|
||||
def infer(self, feats: np.ndarray,
|
||||
feats_len: np.ndarray,
|
||||
vad_mask: np.ndarray,
|
||||
sub_masks: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
outputs = self.ort_infer([feats, feats_len, vad_mask, sub_masks])
|
||||
return outputs
|
||||
|
||||
Reference in New Issue
Block a user