mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
@@ -0,0 +1,2 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
from .paraformer_bin import Paraformer
|
||||
@@ -0,0 +1,197 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
import os.path
|
||||
from pathlib import Path
|
||||
from typing import List, Union, Tuple
|
||||
|
||||
import copy
|
||||
import librosa
|
||||
import numpy as np
|
||||
|
||||
from .utils.utils import (CharTokenizer, Hypothesis,
|
||||
TokenIDConverter, get_logger,
|
||||
read_yaml)
|
||||
from .utils.postprocess_utils import sentence_postprocess
|
||||
from .utils.frontend import WavFrontend
|
||||
from .utils.timestamp_utils import time_stamp_lfr6_onnx
|
||||
logging = get_logger()
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class Paraformer():
|
||||
def __init__(self, model_dir: Union[str, Path] = None,
|
||||
batch_size: int = 1,
|
||||
device_id: Union[str, int] = "-1",
|
||||
plot_timestamp_to: str = "",
|
||||
quantize: bool = False,
|
||||
intra_op_num_threads: int = 1,
|
||||
):
|
||||
|
||||
if not Path(model_dir).exists():
|
||||
raise FileNotFoundError(f'{model_dir} does not exist.')
|
||||
|
||||
model_file = os.path.join(model_dir, 'model.torchscripts')
|
||||
if quantize:
|
||||
model_file = os.path.join(model_dir, 'model_quant.torchscripts')
|
||||
config_file = os.path.join(model_dir, 'config.yaml')
|
||||
cmvn_file = os.path.join(model_dir, 'am.mvn')
|
||||
config = read_yaml(config_file)
|
||||
|
||||
self.converter = TokenIDConverter(config['token_list'])
|
||||
self.tokenizer = CharTokenizer()
|
||||
self.frontend = WavFrontend(
|
||||
cmvn_file=cmvn_file,
|
||||
**config['frontend_conf']
|
||||
)
|
||||
self.ort_infer = torch.jit.load(model_file)
|
||||
self.batch_size = batch_size
|
||||
self.device_id = device_id
|
||||
self.plot_timestamp_to = plot_timestamp_to
|
||||
if "predictor_bias" in config['model_conf'].keys():
|
||||
self.pred_bias = config['model_conf']['predictor_bias']
|
||||
else:
|
||||
self.pred_bias = 0
|
||||
|
||||
def __call__(self, wav_content: Union[str, np.ndarray, List[str]], **kwargs) -> List:
|
||||
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
|
||||
waveform_nums = len(waveform_list)
|
||||
asr_res = []
|
||||
for beg_idx in range(0, waveform_nums, self.batch_size):
|
||||
|
||||
end_idx = min(waveform_nums, beg_idx + self.batch_size)
|
||||
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
|
||||
try:
|
||||
with torch.no_grad():
|
||||
if int(self.device_id) == -1:
|
||||
outputs = self.ort_infer(feats, feats_len)
|
||||
am_scores, valid_token_lens = outputs[0], outputs[1]
|
||||
else:
|
||||
outputs = self.ort_infer(feats.cuda(), feats_len.cuda())
|
||||
am_scores, valid_token_lens = outputs[0].cpu(), outputs[1].cpu()
|
||||
if len(outputs) == 4:
|
||||
# for BiCifParaformer Inference
|
||||
us_alphas, us_peaks = outputs[2], outputs[3]
|
||||
else:
|
||||
us_alphas, us_peaks = None, None
|
||||
except:
|
||||
#logging.warning(traceback.format_exc())
|
||||
logging.warning("input wav is silence or noise")
|
||||
preds = ['']
|
||||
else:
|
||||
preds = self.decode(am_scores, valid_token_lens)
|
||||
if us_peaks is None:
|
||||
for pred in preds:
|
||||
pred = sentence_postprocess(pred)
|
||||
asr_res.append({'preds': pred})
|
||||
else:
|
||||
for pred, us_peaks_ in zip(preds, us_peaks):
|
||||
raw_tokens = pred
|
||||
timestamp, timestamp_raw = time_stamp_lfr6_onnx(us_peaks_, copy.copy(raw_tokens))
|
||||
text_proc, timestamp_proc, _ = sentence_postprocess(raw_tokens, timestamp_raw)
|
||||
# logging.warning(timestamp)
|
||||
if len(self.plot_timestamp_to):
|
||||
self.plot_wave_timestamp(waveform_list[0], timestamp, self.plot_timestamp_to)
|
||||
asr_res.append({'preds': text_proc, 'timestamp': timestamp_proc, "raw_tokens": raw_tokens})
|
||||
return asr_res
|
||||
|
||||
def plot_wave_timestamp(self, wav, text_timestamp, dest):
|
||||
# TODO: Plot the wav and timestamp results with matplotlib
|
||||
import matplotlib
|
||||
matplotlib.use('Agg')
|
||||
matplotlib.rc("font", family='Alibaba PuHuiTi') # set it to a font that your system supports
|
||||
import matplotlib.pyplot as plt
|
||||
fig, ax1 = plt.subplots(figsize=(11, 3.5), dpi=320)
|
||||
ax2 = ax1.twinx()
|
||||
ax2.set_ylim([0, 2.0])
|
||||
# plot waveform
|
||||
ax1.set_ylim([-0.3, 0.3])
|
||||
time = np.arange(wav.shape[0]) / 16000
|
||||
ax1.plot(time, wav/wav.max()*0.3, color='gray', alpha=0.4)
|
||||
# plot lines and text
|
||||
for (char, start, end) in text_timestamp:
|
||||
ax1.vlines(start, -0.3, 0.3, ls='--')
|
||||
ax1.vlines(end, -0.3, 0.3, ls='--')
|
||||
x_adj = 0.045 if char != '<sil>' else 0.12
|
||||
ax1.text((start + end) * 0.5 - x_adj, 0, char)
|
||||
# plt.legend()
|
||||
plotname = "{}/timestamp.png".format(dest)
|
||||
plt.savefig(plotname, bbox_inches='tight')
|
||||
|
||||
def load_data(self,
|
||||
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
|
||||
def load_wav(path: str) -> np.ndarray:
|
||||
waveform, _ = librosa.load(path, sr=fs)
|
||||
return waveform
|
||||
|
||||
if isinstance(wav_content, np.ndarray):
|
||||
return [wav_content]
|
||||
|
||||
if isinstance(wav_content, str):
|
||||
return [load_wav(wav_content)]
|
||||
|
||||
if isinstance(wav_content, list):
|
||||
return [load_wav(path) for path in wav_content]
|
||||
|
||||
raise TypeError(
|
||||
f'The type of {wav_content} is not in [str, np.ndarray, list]')
|
||||
|
||||
def extract_feat(self,
|
||||
waveform_list: List[np.ndarray]
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
feats, feats_len = [], []
|
||||
for waveform in waveform_list:
|
||||
speech, _ = self.frontend.fbank(waveform)
|
||||
feat, feat_len = self.frontend.lfr_cmvn(speech)
|
||||
feats.append(feat)
|
||||
feats_len.append(feat_len)
|
||||
|
||||
feats = self.pad_feats(feats, np.max(feats_len))
|
||||
feats_len = np.array(feats_len).astype(np.int32)
|
||||
feats = torch.from_numpy(feats).type(torch.float32)
|
||||
feats_len = torch.from_numpy(feats_len).type(torch.int32)
|
||||
return feats, feats_len
|
||||
|
||||
@staticmethod
|
||||
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
|
||||
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
|
||||
pad_width = ((0, max_feat_len - cur_len), (0, 0))
|
||||
return np.pad(feat, pad_width, 'constant', constant_values=0)
|
||||
|
||||
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
|
||||
feats = np.array(feat_res).astype(np.float32)
|
||||
return feats
|
||||
|
||||
def infer(self, feats: np.ndarray,
|
||||
feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
outputs = self.ort_infer([feats, feats_len])
|
||||
return outputs
|
||||
|
||||
def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]:
|
||||
return [self.decode_one(am_score, token_num)
|
||||
for am_score, token_num in zip(am_scores, token_nums)]
|
||||
|
||||
def decode_one(self,
|
||||
am_score: np.ndarray,
|
||||
valid_token_num: int) -> List[str]:
|
||||
yseq = am_score.argmax(axis=-1)
|
||||
score = am_score.max(axis=-1)
|
||||
score = np.sum(score, axis=-1)
|
||||
|
||||
# pad with mask tokens to ensure compatibility with sos/eos tokens
|
||||
# asr_model.sos:1 asr_model.eos:2
|
||||
yseq = np.array([1] + yseq.tolist() + [2])
|
||||
hyp = Hypothesis(yseq=yseq, score=score)
|
||||
|
||||
# remove sos/eos and get results
|
||||
last_pos = -1
|
||||
token_int = hyp.yseq[1:last_pos].tolist()
|
||||
|
||||
# remove blank symbol id, which is assumed to be 0
|
||||
token_int = list(filter(lambda x: x not in (0, 2), token_int))
|
||||
|
||||
# Change integer-ids to tokens
|
||||
token = self.converter.ids2tokens(token_int)
|
||||
token = token[:valid_token_num-self.pred_bias]
|
||||
# texts = sentence_postprocess(token)
|
||||
return token
|
||||
|
||||
@@ -0,0 +1,157 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
def compute_wer(ref_file,
|
||||
hyp_file,
|
||||
cer_detail_file):
|
||||
rst = {
|
||||
'Wrd': 0,
|
||||
'Corr': 0,
|
||||
'Ins': 0,
|
||||
'Del': 0,
|
||||
'Sub': 0,
|
||||
'Snt': 0,
|
||||
'Err': 0.0,
|
||||
'S.Err': 0.0,
|
||||
'wrong_words': 0,
|
||||
'wrong_sentences': 0
|
||||
}
|
||||
|
||||
hyp_dict = {}
|
||||
ref_dict = {}
|
||||
with open(hyp_file, 'r') as hyp_reader:
|
||||
for line in hyp_reader:
|
||||
key = line.strip().split()[0]
|
||||
value = line.strip().split()[1:]
|
||||
hyp_dict[key] = value
|
||||
with open(ref_file, 'r') as ref_reader:
|
||||
for line in ref_reader:
|
||||
key = line.strip().split()[0]
|
||||
value = line.strip().split()[1:]
|
||||
ref_dict[key] = value
|
||||
|
||||
cer_detail_writer = open(cer_detail_file, 'w')
|
||||
for hyp_key in hyp_dict:
|
||||
if hyp_key in ref_dict:
|
||||
out_item = compute_wer_by_line(hyp_dict[hyp_key], ref_dict[hyp_key])
|
||||
rst['Wrd'] += out_item['nwords']
|
||||
rst['Corr'] += out_item['cor']
|
||||
rst['wrong_words'] += out_item['wrong']
|
||||
rst['Ins'] += out_item['ins']
|
||||
rst['Del'] += out_item['del']
|
||||
rst['Sub'] += out_item['sub']
|
||||
rst['Snt'] += 1
|
||||
if out_item['wrong'] > 0:
|
||||
rst['wrong_sentences'] += 1
|
||||
cer_detail_writer.write(hyp_key + print_cer_detail(out_item) + '\n')
|
||||
cer_detail_writer.write("ref:" + '\t' + "".join(ref_dict[hyp_key]) + '\n')
|
||||
cer_detail_writer.write("hyp:" + '\t' + "".join(hyp_dict[hyp_key]) + '\n')
|
||||
|
||||
if rst['Wrd'] > 0:
|
||||
rst['Err'] = round(rst['wrong_words'] * 100 / rst['Wrd'], 2)
|
||||
if rst['Snt'] > 0:
|
||||
rst['S.Err'] = round(rst['wrong_sentences'] * 100 / rst['Snt'], 2)
|
||||
|
||||
cer_detail_writer.write('\n')
|
||||
cer_detail_writer.write("%WER " + str(rst['Err']) + " [ " + str(rst['wrong_words'])+ " / " + str(rst['Wrd']) +
|
||||
", " + str(rst['Ins']) + " ins, " + str(rst['Del']) + " del, " + str(rst['Sub']) + " sub ]" + '\n')
|
||||
cer_detail_writer.write("%SER " + str(rst['S.Err']) + " [ " + str(rst['wrong_sentences']) + " / " + str(rst['Snt']) + " ]" + '\n')
|
||||
cer_detail_writer.write("Scored " + str(len(hyp_dict)) + " sentences, " + str(len(hyp_dict) - rst['Snt']) + " not present in hyp." + '\n')
|
||||
|
||||
|
||||
def compute_wer_by_line(hyp,
|
||||
ref):
|
||||
hyp = list(map(lambda x: x.lower(), hyp))
|
||||
ref = list(map(lambda x: x.lower(), ref))
|
||||
|
||||
len_hyp = len(hyp)
|
||||
len_ref = len(ref)
|
||||
|
||||
cost_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int16)
|
||||
|
||||
ops_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int8)
|
||||
|
||||
for i in range(len_hyp + 1):
|
||||
cost_matrix[i][0] = i
|
||||
for j in range(len_ref + 1):
|
||||
cost_matrix[0][j] = j
|
||||
|
||||
for i in range(1, len_hyp + 1):
|
||||
for j in range(1, len_ref + 1):
|
||||
if hyp[i - 1] == ref[j - 1]:
|
||||
cost_matrix[i][j] = cost_matrix[i - 1][j - 1]
|
||||
else:
|
||||
substitution = cost_matrix[i - 1][j - 1] + 1
|
||||
insertion = cost_matrix[i - 1][j] + 1
|
||||
deletion = cost_matrix[i][j - 1] + 1
|
||||
|
||||
compare_val = [substitution, insertion, deletion]
|
||||
|
||||
min_val = min(compare_val)
|
||||
operation_idx = compare_val.index(min_val) + 1
|
||||
cost_matrix[i][j] = min_val
|
||||
ops_matrix[i][j] = operation_idx
|
||||
|
||||
match_idx = []
|
||||
i = len_hyp
|
||||
j = len_ref
|
||||
rst = {
|
||||
'nwords': len_ref,
|
||||
'cor': 0,
|
||||
'wrong': 0,
|
||||
'ins': 0,
|
||||
'del': 0,
|
||||
'sub': 0
|
||||
}
|
||||
while i >= 0 or j >= 0:
|
||||
i_idx = max(0, i)
|
||||
j_idx = max(0, j)
|
||||
|
||||
if ops_matrix[i_idx][j_idx] == 0: # correct
|
||||
if i - 1 >= 0 and j - 1 >= 0:
|
||||
match_idx.append((j - 1, i - 1))
|
||||
rst['cor'] += 1
|
||||
|
||||
i -= 1
|
||||
j -= 1
|
||||
|
||||
elif ops_matrix[i_idx][j_idx] == 2: # insert
|
||||
i -= 1
|
||||
rst['ins'] += 1
|
||||
|
||||
elif ops_matrix[i_idx][j_idx] == 3: # delete
|
||||
j -= 1
|
||||
rst['del'] += 1
|
||||
|
||||
elif ops_matrix[i_idx][j_idx] == 1: # substitute
|
||||
i -= 1
|
||||
j -= 1
|
||||
rst['sub'] += 1
|
||||
|
||||
if i < 0 and j >= 0:
|
||||
rst['del'] += 1
|
||||
elif j < 0 and i >= 0:
|
||||
rst['ins'] += 1
|
||||
|
||||
match_idx.reverse()
|
||||
wrong_cnt = cost_matrix[len_hyp][len_ref]
|
||||
rst['wrong'] = wrong_cnt
|
||||
|
||||
return rst
|
||||
|
||||
def print_cer_detail(rst):
|
||||
return ("(" + "nwords=" + str(rst['nwords']) + ",cor=" + str(rst['cor'])
|
||||
+ ",ins=" + str(rst['ins']) + ",del=" + str(rst['del']) + ",sub="
|
||||
+ str(rst['sub']) + ") corr:" + '{:.2%}'.format(rst['cor']/rst['nwords'])
|
||||
+ ",cer:" + '{:.2%}'.format(rst['wrong']/rst['nwords']))
|
||||
|
||||
if __name__ == '__main__':
|
||||
if len(sys.argv) != 4:
|
||||
print("usage : python compute-wer.py test.ref test.hyp test.wer")
|
||||
sys.exit(0)
|
||||
|
||||
ref_file = sys.argv[1]
|
||||
hyp_file = sys.argv[2]
|
||||
cer_detail_file = sys.argv[3]
|
||||
compute_wer(ref_file, hyp_file, cer_detail_file)
|
||||
@@ -0,0 +1,191 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
from typeguard import check_argument_types
|
||||
import kaldi_native_fbank as knf
|
||||
|
||||
root_dir = Path(__file__).resolve().parent
|
||||
|
||||
logger_initialized = {}
|
||||
|
||||
|
||||
class WavFrontend():
|
||||
"""Conventional frontend structure for ASR.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cmvn_file: str = None,
|
||||
fs: int = 16000,
|
||||
window: str = 'hamming',
|
||||
n_mels: int = 80,
|
||||
frame_length: int = 25,
|
||||
frame_shift: int = 10,
|
||||
lfr_m: int = 1,
|
||||
lfr_n: int = 1,
|
||||
dither: float = 1.0,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
check_argument_types()
|
||||
|
||||
opts = knf.FbankOptions()
|
||||
opts.frame_opts.samp_freq = fs
|
||||
opts.frame_opts.dither = dither
|
||||
opts.frame_opts.window_type = window
|
||||
opts.frame_opts.frame_shift_ms = float(frame_shift)
|
||||
opts.frame_opts.frame_length_ms = float(frame_length)
|
||||
opts.mel_opts.num_bins = n_mels
|
||||
opts.energy_floor = 0
|
||||
opts.frame_opts.snip_edges = True
|
||||
opts.mel_opts.debug_mel = False
|
||||
self.opts = opts
|
||||
|
||||
self.lfr_m = lfr_m
|
||||
self.lfr_n = lfr_n
|
||||
self.cmvn_file = cmvn_file
|
||||
|
||||
if self.cmvn_file:
|
||||
self.cmvn = self.load_cmvn()
|
||||
self.fbank_fn = None
|
||||
self.fbank_beg_idx = 0
|
||||
self.reset_status()
|
||||
|
||||
def fbank(self,
|
||||
waveform: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
waveform = waveform * (1 << 15)
|
||||
self.fbank_fn = knf.OnlineFbank(self.opts)
|
||||
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
|
||||
frames = self.fbank_fn.num_frames_ready
|
||||
mat = np.empty([frames, self.opts.mel_opts.num_bins])
|
||||
for i in range(frames):
|
||||
mat[i, :] = self.fbank_fn.get_frame(i)
|
||||
feat = mat.astype(np.float32)
|
||||
feat_len = np.array(mat.shape[0]).astype(np.int32)
|
||||
return feat, feat_len
|
||||
|
||||
def fbank_online(self,
|
||||
waveform: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
waveform = waveform * (1 << 15)
|
||||
# self.fbank_fn = knf.OnlineFbank(self.opts)
|
||||
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
|
||||
frames = self.fbank_fn.num_frames_ready
|
||||
mat = np.empty([frames, self.opts.mel_opts.num_bins])
|
||||
for i in range(self.fbank_beg_idx, frames):
|
||||
mat[i, :] = self.fbank_fn.get_frame(i)
|
||||
# self.fbank_beg_idx += (frames-self.fbank_beg_idx)
|
||||
feat = mat.astype(np.float32)
|
||||
feat_len = np.array(mat.shape[0]).astype(np.int32)
|
||||
return feat, feat_len
|
||||
|
||||
def reset_status(self):
|
||||
self.fbank_fn = knf.OnlineFbank(self.opts)
|
||||
self.fbank_beg_idx = 0
|
||||
|
||||
def lfr_cmvn(self, feat: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
if self.lfr_m != 1 or self.lfr_n != 1:
|
||||
feat = self.apply_lfr(feat, self.lfr_m, self.lfr_n)
|
||||
|
||||
if self.cmvn_file:
|
||||
feat = self.apply_cmvn(feat)
|
||||
|
||||
feat_len = np.array(feat.shape[0]).astype(np.int32)
|
||||
return feat, feat_len
|
||||
|
||||
@staticmethod
|
||||
def apply_lfr(inputs: np.ndarray, lfr_m: int, lfr_n: int) -> np.ndarray:
|
||||
LFR_inputs = []
|
||||
|
||||
T = inputs.shape[0]
|
||||
T_lfr = int(np.ceil(T / lfr_n))
|
||||
left_padding = np.tile(inputs[0], ((lfr_m - 1) // 2, 1))
|
||||
inputs = np.vstack((left_padding, inputs))
|
||||
T = T + (lfr_m - 1) // 2
|
||||
for i in range(T_lfr):
|
||||
if lfr_m <= T - i * lfr_n:
|
||||
LFR_inputs.append(
|
||||
(inputs[i * lfr_n:i * lfr_n + lfr_m]).reshape(1, -1))
|
||||
else:
|
||||
# process last LFR frame
|
||||
num_padding = lfr_m - (T - i * lfr_n)
|
||||
frame = inputs[i * lfr_n:].reshape(-1)
|
||||
for _ in range(num_padding):
|
||||
frame = np.hstack((frame, inputs[-1]))
|
||||
|
||||
LFR_inputs.append(frame)
|
||||
LFR_outputs = np.vstack(LFR_inputs).astype(np.float32)
|
||||
return LFR_outputs
|
||||
|
||||
def apply_cmvn(self, inputs: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Apply CMVN with mvn data
|
||||
"""
|
||||
frame, dim = inputs.shape
|
||||
means = np.tile(self.cmvn[0:1, :dim], (frame, 1))
|
||||
vars = np.tile(self.cmvn[1:2, :dim], (frame, 1))
|
||||
inputs = (inputs + means) * vars
|
||||
return inputs
|
||||
|
||||
def load_cmvn(self,) -> np.ndarray:
|
||||
with open(self.cmvn_file, 'r', encoding='utf-8') as f:
|
||||
lines = f.readlines()
|
||||
|
||||
means_list = []
|
||||
vars_list = []
|
||||
for i in range(len(lines)):
|
||||
line_item = lines[i].split()
|
||||
if line_item[0] == '<AddShift>':
|
||||
line_item = lines[i + 1].split()
|
||||
if line_item[0] == '<LearnRateCoef>':
|
||||
add_shift_line = line_item[3:(len(line_item) - 1)]
|
||||
means_list = list(add_shift_line)
|
||||
continue
|
||||
elif line_item[0] == '<Rescale>':
|
||||
line_item = lines[i + 1].split()
|
||||
if line_item[0] == '<LearnRateCoef>':
|
||||
rescale_line = line_item[3:(len(line_item) - 1)]
|
||||
vars_list = list(rescale_line)
|
||||
continue
|
||||
|
||||
means = np.array(means_list).astype(np.float64)
|
||||
vars = np.array(vars_list).astype(np.float64)
|
||||
cmvn = np.array([means, vars])
|
||||
return cmvn
|
||||
|
||||
def load_bytes(input):
|
||||
middle_data = np.frombuffer(input, dtype=np.int16)
|
||||
middle_data = np.asarray(middle_data)
|
||||
if middle_data.dtype.kind not in 'iu':
|
||||
raise TypeError("'middle_data' must be an array of integers")
|
||||
dtype = np.dtype('float32')
|
||||
if dtype.kind != 'f':
|
||||
raise TypeError("'dtype' must be a floating point type")
|
||||
|
||||
i = np.iinfo(middle_data.dtype)
|
||||
abs_max = 2 ** (i.bits - 1)
|
||||
offset = i.min + abs_max
|
||||
array = np.frombuffer((middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32)
|
||||
return array
|
||||
|
||||
|
||||
def test():
|
||||
path = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav"
|
||||
import librosa
|
||||
cmvn_file = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/am.mvn"
|
||||
config_file = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/config.yaml"
|
||||
from funasr_local.runtime.python.onnxruntime.rapid_paraformer.utils.utils import read_yaml
|
||||
config = read_yaml(config_file)
|
||||
waveform, _ = librosa.load(path, sr=None)
|
||||
frontend = WavFrontend(
|
||||
cmvn_file=cmvn_file,
|
||||
**config['frontend_conf'],
|
||||
)
|
||||
speech, _ = frontend.fbank_online(waveform) #1d, (sample,), numpy
|
||||
feat, feat_len = frontend.lfr_cmvn(speech) # 2d, (frame, 450), np.float32 -> torch, torch.from_numpy(), dtype, (1, frame, 450)
|
||||
|
||||
frontend.reset_status() # clear cache
|
||||
return feat, feat_len
|
||||
|
||||
if __name__ == '__main__':
|
||||
test()
|
||||
@@ -0,0 +1,240 @@
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
|
||||
import string
|
||||
import logging
|
||||
from typing import Any, List, Union
|
||||
|
||||
|
||||
def isChinese(ch: str):
|
||||
if '\u4e00' <= ch <= '\u9fff' or '\u0030' <= ch <= '\u0039':
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def isAllChinese(word: Union[List[Any], str]):
|
||||
word_lists = []
|
||||
for i in word:
|
||||
cur = i.replace(' ', '')
|
||||
cur = cur.replace('</s>', '')
|
||||
cur = cur.replace('<s>', '')
|
||||
word_lists.append(cur)
|
||||
|
||||
if len(word_lists) == 0:
|
||||
return False
|
||||
|
||||
for ch in word_lists:
|
||||
if isChinese(ch) is False:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def isAllAlpha(word: Union[List[Any], str]):
|
||||
word_lists = []
|
||||
for i in word:
|
||||
cur = i.replace(' ', '')
|
||||
cur = cur.replace('</s>', '')
|
||||
cur = cur.replace('<s>', '')
|
||||
word_lists.append(cur)
|
||||
|
||||
if len(word_lists) == 0:
|
||||
return False
|
||||
|
||||
for ch in word_lists:
|
||||
if ch.isalpha() is False and ch != "'":
|
||||
return False
|
||||
elif ch.isalpha() is True and isChinese(ch) is True:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
# def abbr_dispose(words: List[Any]) -> List[Any]:
|
||||
def abbr_dispose(words: List[Any], time_stamp: List[List] = None) -> List[Any]:
|
||||
words_size = len(words)
|
||||
word_lists = []
|
||||
abbr_begin = []
|
||||
abbr_end = []
|
||||
last_num = -1
|
||||
ts_lists = []
|
||||
ts_nums = []
|
||||
ts_index = 0
|
||||
for num in range(words_size):
|
||||
if num <= last_num:
|
||||
continue
|
||||
|
||||
if len(words[num]) == 1 and words[num].encode('utf-8').isalpha():
|
||||
if num + 1 < words_size and words[
|
||||
num + 1] == ' ' and num + 2 < words_size and len(
|
||||
words[num +
|
||||
2]) == 1 and words[num +
|
||||
2].encode('utf-8').isalpha():
|
||||
# found the begin of abbr
|
||||
abbr_begin.append(num)
|
||||
num += 2
|
||||
abbr_end.append(num)
|
||||
# to find the end of abbr
|
||||
while True:
|
||||
num += 1
|
||||
if num < words_size and words[num] == ' ':
|
||||
num += 1
|
||||
if num < words_size and len(
|
||||
words[num]) == 1 and words[num].encode(
|
||||
'utf-8').isalpha():
|
||||
abbr_end.pop()
|
||||
abbr_end.append(num)
|
||||
last_num = num
|
||||
else:
|
||||
break
|
||||
else:
|
||||
break
|
||||
|
||||
for num in range(words_size):
|
||||
if words[num] == ' ':
|
||||
ts_nums.append(ts_index)
|
||||
else:
|
||||
ts_nums.append(ts_index)
|
||||
ts_index += 1
|
||||
last_num = -1
|
||||
for num in range(words_size):
|
||||
if num <= last_num:
|
||||
continue
|
||||
|
||||
if num in abbr_begin:
|
||||
if time_stamp is not None:
|
||||
begin = time_stamp[ts_nums[num]][0]
|
||||
word_lists.append(words[num].upper())
|
||||
num += 1
|
||||
while num < words_size:
|
||||
if num in abbr_end:
|
||||
word_lists.append(words[num].upper())
|
||||
last_num = num
|
||||
break
|
||||
else:
|
||||
if words[num].encode('utf-8').isalpha():
|
||||
word_lists.append(words[num].upper())
|
||||
num += 1
|
||||
if time_stamp is not None:
|
||||
end = time_stamp[ts_nums[num]][1]
|
||||
ts_lists.append([begin, end])
|
||||
else:
|
||||
word_lists.append(words[num])
|
||||
if time_stamp is not None and words[num] != ' ':
|
||||
begin = time_stamp[ts_nums[num]][0]
|
||||
end = time_stamp[ts_nums[num]][1]
|
||||
ts_lists.append([begin, end])
|
||||
begin = end
|
||||
|
||||
if time_stamp is not None:
|
||||
return word_lists, ts_lists
|
||||
else:
|
||||
return word_lists
|
||||
|
||||
|
||||
def sentence_postprocess(words: List[Any], time_stamp: List[List] = None):
|
||||
middle_lists = []
|
||||
word_lists = []
|
||||
word_item = ''
|
||||
ts_lists = []
|
||||
|
||||
# wash words lists
|
||||
for i in words:
|
||||
word = ''
|
||||
if isinstance(i, str):
|
||||
word = i
|
||||
else:
|
||||
word = i.decode('utf-8')
|
||||
|
||||
if word in ['<s>', '</s>', '<unk>']:
|
||||
continue
|
||||
else:
|
||||
middle_lists.append(word)
|
||||
|
||||
# all chinese characters
|
||||
if isAllChinese(middle_lists):
|
||||
for i, ch in enumerate(middle_lists):
|
||||
word_lists.append(ch.replace(' ', ''))
|
||||
if time_stamp is not None:
|
||||
ts_lists = time_stamp
|
||||
|
||||
# all alpha characters
|
||||
elif isAllAlpha(middle_lists):
|
||||
ts_flag = True
|
||||
for i, ch in enumerate(middle_lists):
|
||||
if ts_flag and time_stamp is not None:
|
||||
begin = time_stamp[i][0]
|
||||
end = time_stamp[i][1]
|
||||
word = ''
|
||||
if '@@' in ch:
|
||||
word = ch.replace('@@', '')
|
||||
word_item += word
|
||||
if time_stamp is not None:
|
||||
ts_flag = False
|
||||
end = time_stamp[i][1]
|
||||
else:
|
||||
word_item += ch
|
||||
word_lists.append(word_item)
|
||||
word_lists.append(' ')
|
||||
word_item = ''
|
||||
if time_stamp is not None:
|
||||
ts_flag = True
|
||||
end = time_stamp[i][1]
|
||||
ts_lists.append([begin, end])
|
||||
begin = end
|
||||
|
||||
# mix characters
|
||||
else:
|
||||
alpha_blank = False
|
||||
ts_flag = True
|
||||
begin = -1
|
||||
end = -1
|
||||
for i, ch in enumerate(middle_lists):
|
||||
if ts_flag and time_stamp is not None:
|
||||
begin = time_stamp[i][0]
|
||||
end = time_stamp[i][1]
|
||||
word = ''
|
||||
if isAllChinese(ch):
|
||||
if alpha_blank is True:
|
||||
word_lists.pop()
|
||||
word_lists.append(ch)
|
||||
alpha_blank = False
|
||||
if time_stamp is not None:
|
||||
ts_flag = True
|
||||
ts_lists.append([begin, end])
|
||||
begin = end
|
||||
elif '@@' in ch:
|
||||
word = ch.replace('@@', '')
|
||||
word_item += word
|
||||
alpha_blank = False
|
||||
if time_stamp is not None:
|
||||
ts_flag = False
|
||||
end = time_stamp[i][1]
|
||||
elif isAllAlpha(ch):
|
||||
word_item += ch
|
||||
word_lists.append(word_item)
|
||||
word_lists.append(' ')
|
||||
word_item = ''
|
||||
alpha_blank = True
|
||||
if time_stamp is not None:
|
||||
ts_flag = True
|
||||
end = time_stamp[i][1]
|
||||
ts_lists.append([begin, end])
|
||||
begin = end
|
||||
else:
|
||||
raise ValueError('invalid character: {}'.format(ch))
|
||||
|
||||
if time_stamp is not None:
|
||||
word_lists, ts_lists = abbr_dispose(word_lists, ts_lists)
|
||||
real_word_lists = []
|
||||
for ch in word_lists:
|
||||
if ch != ' ':
|
||||
real_word_lists.append(ch)
|
||||
sentence = ' '.join(real_word_lists).strip()
|
||||
return sentence, ts_lists, real_word_lists
|
||||
else:
|
||||
word_lists = abbr_dispose(word_lists)
|
||||
real_word_lists = []
|
||||
for ch in word_lists:
|
||||
if ch != ' ':
|
||||
real_word_lists.append(ch)
|
||||
sentence = ''.join(word_lists).strip()
|
||||
return sentence, real_word_lists
|
||||
@@ -0,0 +1,59 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def time_stamp_lfr6_onnx(us_cif_peak, char_list, begin_time=0.0, total_offset=-1.5):
|
||||
if not len(char_list):
|
||||
return []
|
||||
START_END_THRESHOLD = 5
|
||||
MAX_TOKEN_DURATION = 30
|
||||
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
|
||||
cif_peak = us_cif_peak.reshape(-1)
|
||||
num_frames = cif_peak.shape[-1]
|
||||
if char_list[-1] == '</s>':
|
||||
char_list = char_list[:-1]
|
||||
# char_list = [i for i in text]
|
||||
timestamp_list = []
|
||||
new_char_list = []
|
||||
# for bicif model trained with large data, cif2 actually fires when a character starts
|
||||
# so treat the frames between two peaks as the duration of the former token
|
||||
fire_place = np.where(cif_peak>1.0-1e-4)[0] + total_offset # np format
|
||||
num_peak = len(fire_place)
|
||||
assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
|
||||
# begin silence
|
||||
if fire_place[0] > START_END_THRESHOLD:
|
||||
# char_list.insert(0, '<sil>')
|
||||
timestamp_list.append([0.0, fire_place[0]*TIME_RATE])
|
||||
new_char_list.append('<sil>')
|
||||
# tokens timestamp
|
||||
for i in range(len(fire_place)-1):
|
||||
new_char_list.append(char_list[i])
|
||||
if i == len(fire_place)-2 or MAX_TOKEN_DURATION < 0 or fire_place[i+1] - fire_place[i] < MAX_TOKEN_DURATION:
|
||||
timestamp_list.append([fire_place[i]*TIME_RATE, fire_place[i+1]*TIME_RATE])
|
||||
else:
|
||||
# cut the duration to token and sil of the 0-weight frames last long
|
||||
_split = fire_place[i] + MAX_TOKEN_DURATION
|
||||
timestamp_list.append([fire_place[i]*TIME_RATE, _split*TIME_RATE])
|
||||
timestamp_list.append([_split*TIME_RATE, fire_place[i+1]*TIME_RATE])
|
||||
new_char_list.append('<sil>')
|
||||
# tail token and end silence
|
||||
if num_frames - fire_place[-1] > START_END_THRESHOLD:
|
||||
_end = (num_frames + fire_place[-1]) / 2
|
||||
timestamp_list[-1][1] = _end*TIME_RATE
|
||||
timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE])
|
||||
new_char_list.append("<sil>")
|
||||
else:
|
||||
timestamp_list[-1][1] = num_frames*TIME_RATE
|
||||
if begin_time: # add offset time in model with vad
|
||||
for i in range(len(timestamp_list)):
|
||||
timestamp_list[i][0] = timestamp_list[i][0] + begin_time / 1000.0
|
||||
timestamp_list[i][1] = timestamp_list[i][1] + begin_time / 1000.0
|
||||
assert len(new_char_list) == len(timestamp_list)
|
||||
res_str = ""
|
||||
for char, timestamp in zip(new_char_list, timestamp_list):
|
||||
res_str += "{} {} {};".format(char, timestamp[0], timestamp[1])
|
||||
res = []
|
||||
for char, timestamp in zip(new_char_list, timestamp_list):
|
||||
if char != '<sil>':
|
||||
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
|
||||
return res_str, res
|
||||
|
||||
162
funasr_local/runtime/python/libtorch/funasr_torch/utils/utils.py
Normal file
162
funasr_local/runtime/python/libtorch/funasr_torch/utils/utils.py
Normal file
@@ -0,0 +1,162 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import functools
|
||||
import logging
|
||||
import pickle
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import yaml
|
||||
|
||||
from typeguard import check_argument_types
|
||||
|
||||
import warnings
|
||||
|
||||
root_dir = Path(__file__).resolve().parent
|
||||
|
||||
logger_initialized = {}
|
||||
|
||||
|
||||
class TokenIDConverter():
|
||||
def __init__(self, token_list: Union[List, str],
|
||||
):
|
||||
check_argument_types()
|
||||
|
||||
self.token_list = token_list
|
||||
self.unk_symbol = token_list[-1]
|
||||
self.token2id = {v: i for i, v in enumerate(self.token_list)}
|
||||
self.unk_id = self.token2id[self.unk_symbol]
|
||||
|
||||
|
||||
def get_num_vocabulary_size(self) -> int:
|
||||
return len(self.token_list)
|
||||
|
||||
def ids2tokens(self,
|
||||
integers: Union[np.ndarray, Iterable[int]]) -> List[str]:
|
||||
if isinstance(integers, np.ndarray) and integers.ndim != 1:
|
||||
raise TokenIDConverterError(
|
||||
f"Must be 1 dim ndarray, but got {integers.ndim}")
|
||||
return [self.token_list[i] for i in integers]
|
||||
|
||||
def tokens2ids(self, tokens: Iterable[str]) -> List[int]:
|
||||
|
||||
return [self.token2id.get(i, self.unk_id) for i in tokens]
|
||||
|
||||
|
||||
class CharTokenizer():
|
||||
def __init__(
|
||||
self,
|
||||
symbol_value: Union[Path, str, Iterable[str]] = None,
|
||||
space_symbol: str = "<space>",
|
||||
remove_non_linguistic_symbols: bool = False,
|
||||
):
|
||||
check_argument_types()
|
||||
|
||||
self.space_symbol = space_symbol
|
||||
self.non_linguistic_symbols = self.load_symbols(symbol_value)
|
||||
self.remove_non_linguistic_symbols = remove_non_linguistic_symbols
|
||||
|
||||
@staticmethod
|
||||
def load_symbols(value: Union[Path, str, Iterable[str]] = None) -> Set:
|
||||
if value is None:
|
||||
return set()
|
||||
|
||||
if isinstance(value, Iterable[str]):
|
||||
return set(value)
|
||||
|
||||
file_path = Path(value)
|
||||
if not file_path.exists():
|
||||
logging.warning("%s doesn't exist.", file_path)
|
||||
return set()
|
||||
|
||||
with file_path.open("r", encoding="utf-8") as f:
|
||||
return set(line.rstrip() for line in f)
|
||||
|
||||
def text2tokens(self, line: Union[str, list]) -> List[str]:
|
||||
tokens = []
|
||||
while len(line) != 0:
|
||||
for w in self.non_linguistic_symbols:
|
||||
if line.startswith(w):
|
||||
if not self.remove_non_linguistic_symbols:
|
||||
tokens.append(line[: len(w)])
|
||||
line = line[len(w):]
|
||||
break
|
||||
else:
|
||||
t = line[0]
|
||||
if t == " ":
|
||||
t = "<space>"
|
||||
tokens.append(t)
|
||||
line = line[1:]
|
||||
return tokens
|
||||
|
||||
def tokens2text(self, tokens: Iterable[str]) -> str:
|
||||
tokens = [t if t != self.space_symbol else " " for t in tokens]
|
||||
return "".join(tokens)
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self.__class__.__name__}("
|
||||
f'space_symbol="{self.space_symbol}"'
|
||||
f'non_linguistic_symbols="{self.non_linguistic_symbols}"'
|
||||
f")"
|
||||
)
|
||||
|
||||
|
||||
|
||||
class Hypothesis(NamedTuple):
|
||||
"""Hypothesis data type."""
|
||||
|
||||
yseq: np.ndarray
|
||||
score: Union[float, np.ndarray] = 0
|
||||
scores: Dict[str, Union[float, np.ndarray]] = dict()
|
||||
states: Dict[str, Any] = dict()
|
||||
|
||||
def asdict(self) -> dict:
|
||||
"""Convert data to JSON-friendly dict."""
|
||||
return self._replace(
|
||||
yseq=self.yseq.tolist(),
|
||||
score=float(self.score),
|
||||
scores={k: float(v) for k, v in self.scores.items()},
|
||||
)._asdict()
|
||||
|
||||
|
||||
def read_yaml(yaml_path: Union[str, Path]) -> Dict:
|
||||
if not Path(yaml_path).exists():
|
||||
raise FileExistsError(f'The {yaml_path} does not exist.')
|
||||
|
||||
with open(str(yaml_path), 'rb') as f:
|
||||
data = yaml.load(f, Loader=yaml.Loader)
|
||||
return data
|
||||
|
||||
|
||||
@functools.lru_cache()
|
||||
def get_logger(name='funasr_local_torch'):
|
||||
"""Initialize and get a logger by name.
|
||||
If the logger has not been initialized, this method will initialize the
|
||||
logger by adding one or two handlers, otherwise the initialized logger will
|
||||
be directly returned. During initialization, a StreamHandler will always be
|
||||
added.
|
||||
Args:
|
||||
name (str): Logger name.
|
||||
Returns:
|
||||
logging.Logger: The expected logger.
|
||||
"""
|
||||
logger = logging.getLogger(name)
|
||||
if name in logger_initialized:
|
||||
return logger
|
||||
|
||||
for logger_name in logger_initialized:
|
||||
if name.startswith(logger_name):
|
||||
return logger
|
||||
|
||||
formatter = logging.Formatter(
|
||||
'[%(asctime)s] %(name)s %(levelname)s: %(message)s',
|
||||
datefmt="%Y/%m/%d %H:%M:%S")
|
||||
|
||||
sh = logging.StreamHandler()
|
||||
sh.setFormatter(formatter)
|
||||
logger.addHandler(sh)
|
||||
logger_initialized[name] = True
|
||||
logger.propagate = False
|
||||
return logger
|
||||
Reference in New Issue
Block a user