add files

This commit is contained in:
烨玮
2025-02-20 12:17:03 +08:00
parent a21dd4555c
commit edd008441b
667 changed files with 473123 additions and 0 deletions

View File

View File

@@ -0,0 +1,56 @@
# CPU Benchmark (Libtorch)
## Configuration
### Data set:
Aishell1 [test set](https://www.openslr.org/33/) , the total audio duration is 36108.919 seconds.
### Tools
#### Install Requirements
Install ModelScope and FunASR
```shell
pip install -U modelscope funasr
# For the users in China, you could install with the command:
#pip install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple
```
Install requirements
```shell
git clone https://github.com/alibaba-damo-academy/FunASR.git && cd FunASR
cd funasr/runtime/python/utils
pip install -r requirements.txt
```
#### Recipe
##### test_rtf
set the model, data path and output_dir
```shell
nohup bash test_rtf.sh &> log.txt &
```
##### test_cer
set the model, data path and output_dir
```shell
nohup bash test_cer.sh &> log.txt &
```
## [Paraformer-large](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary)
### Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz 16core-32processor with avx512_vnni
| concurrent-tasks | processing time(s) | RTF | Speedup Rate |
|:----------------:|:------------------:|:------:|:------------:|
| 1 (torch fp32) | 3522 | 0.0976 | 10.3 |
| 1 (torch int8) | 1746 | 0.0484 | 20.7 |
| 32 (torch fp32) | 236 | 0.0066 | 152.7 |
| 32 (torch int8) | 114 | 0.0032 | 317.4 |
| 64 (torch fp32) | 235 | 0.0065 | 153.7 |
| 64 (torch int8) | 113 | 0.0031 | 319.2 |
[//]: # (### Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz 32core-64processor without avx512_vnni)
## [Paraformer](https://modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8358-tensorflow1/summary)

View File

@@ -0,0 +1,121 @@
# CPU Benchmark (ONNX-python)
## Configuration
### Data set:
Aishell1 [test set](https://www.openslr.org/33/) , the total audio duration is 36108.919 seconds.
### Tools
#### Install Requirements
Install ModelScope and FunASR
```shell
pip install -U modelscope funasr
# For the users in China, you could install with the command:
#pip install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple
```
Install requirements
```shell
git clone https://github.com/alibaba-damo-academy/FunASR.git && cd FunASR
cd funasr/runtime/python/utils
pip install -r requirements.txt
```
#### Recipe
##### test_rtf
set the model, data path and output_dir
```shell
nohup bash test_rtf.sh &> log.txt &
```
##### test_cer
set the model, data path and output_dir
```shell
nohup bash test_cer.sh &> log.txt &
```
## [Paraformer-large](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary)
Number of Parameter: 220M
Storage size: 880MB
Storage size after int8-quant: 237MB
CER: 1.95%
CER after int8-quant: 1.95%
### Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz 16core-32processor with avx512_vnni
| concurrent-tasks | processing time(s) | RTF | Speedup Rate |
|:----------------:|:------------------:|:-------:|:------------:|
| 1 (onnx fp32) | 2806 | 0.0777 | 12.9 |
| 1 (onnx int8) | 1611 | 0.0446 | 22.4 |
| 8 (onnx fp32) | 538 | 0.0149 | 67.1 |
| 8 (onnx int8) | 210 | 0.0058 | 172.4 |
| 16 (onnx fp32) | 288 | 0.0080 | 125.2 |
| 16 (onnx int8) | 117 | 0.0032 | 309.9 |
| 32 (onnx fp32) | 167 | 0.0046 | 216.5 |
| 32 (onnx int8) | 86 | 0.0024 | 420.0 |
| 64 (onnx fp32) | 158 | 0.0044 | 228.1 |
| 64 (onnx int8) | 82 | 0.0023 | 442.8 |
| 96 (onnx fp32) | 151 | 0.0042 | 238.0 |
| 96 (onnx int8) | 80 | 0.0022 | 452.0 |
### Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz 16core-32processor with avx512_vnni
| concurrent-tasks | processing time(s) | RTF | Speedup Rate |
|:----------------:|:------------------:|:------:|:------------:|
| 1 (onnx fp32) | 2613 | 0.0724 | 13.8 |
| 1 (onnx int8) | 1321 | 0.0366 | 22.4 |
| 32 (onnx fp32) | 170 | 0.0047 | 212.7 |
| 32 (onnx int8) | 89 | 0.0025 | 407.0 |
| 64 (onnx fp32) | 166 | 0.0046 | 217.1 |
| 64 (onnx int8) | 87 | 0.0024 | 414.7 |
### Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz 32core-64processor without avx512_vnni
| concurrent-tasks | processing time(s) | RTF | Speedup Rate |
|:----------------:|:------------------:|:------:|:------------:|
| 1 (onnx fp32) | 2959 | 0.0820 | 12.2 |
| 1 (onnx int8) | 2814 | 0.0778 | 12.8 |
| 16 (onnx fp32) | 373 | 0.0103 | 96.9 |
| 16 (onnx int8) | 331 | 0.0091 | 109.0 |
| 32 (onnx fp32) | 211 | 0.0058 | 171.4 |
| 32 (onnx int8) | 181 | 0.0050 | 200.0 |
| 64 (onnx fp32) | 153 | 0.0042 | 235.9 |
| 64 (onnx int8) | 103 | 0.0029 | 349.9 |
| 96 (onnx fp32) | 146 | 0.0041 | 247.0 |
| 96 (onnx int8) | 108 | 0.0030 | 334.1 |
## [Paraformer](https://modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8358-tensorflow1/summary)
Number of Parameter: 68M
Storage size: 275MB
Storage size after int8-quant: 81MB
CER: 3.73%
CER after int8-quant: 3.78%
### Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz 16core-32processor with avx512_vnni
| concurrent-tasks | processing time(s) | RTF | Speedup Rate |
|:----------------:|:------------------:|:------:|:------------:|
| 1 (onnx fp32) | 1173 | 0.0325 | 30.8 |
| 1 (onnx int8) | 976 | 0.0270 | 37.0 |
| 16 (onnx fp32) | 91 | 0.0025 | 395.2 |
| 16 (onnx int8) | 78 | 0.0022 | 463.0 |
| 32 (onnx fp32) | 60 | 0.0017 | 598.8 |
| 32 (onnx int8) | 40 | 0.0011 | 892.9 |
| 64 (onnx fp32) | 55 | 0.0015 | 653.6 |
| 64 (onnx int8) | 31 | 0.0009 | 1162.8 |
| 96 (onnx fp32) | 57 | 0.0016 | 632.9 |
| 96 (onnx int8) | 33 | 0.0009 | 1098.9 |

View File

@@ -0,0 +1,107 @@
# CPU Benchmark (ONNX-cpp)
## Configuration
### Data set:
Aishell1 [test set](https://www.openslr.org/33/) , the total audio duration is 36108.919 seconds.
### Tools
#### Install [modelscope and funasr](https://github.com/alibaba-damo-academy/FunASR#installation)
```shell
pip3 install torch torchaudio
pip install -U modelscope
pip install -U funasr
```
#### Export [onnx model](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export)
```shell
python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize True
```
#### Building for Linux/Unix
Download onnxruntime
```shell
# download an appropriate onnxruntime from https://github.com/microsoft/onnxruntime/releases/tag/v1.14.0
# here we get a copy of onnxruntime for linux 64
wget https://github.com/microsoft/onnxruntime/releases/download/v1.14.0/onnxruntime-linux-x64-1.14.0.tgz
tar -zxvf onnxruntime-linux-x64-1.14.0.tgz
```
Install openblas
```shell
sudo apt-get install libopenblas-dev #ubuntu
# sudo yum -y install openblas-devel #centos
```
Build runtime
```shell
git clone https://github.com/alibaba-damo-academy/FunASR.git && cd funasr/runtime/onnxruntime
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=release .. -DONNXRUNTIME_DIR=/path/to/onnxruntime-linux-x64-1.14.0
make
```
#### Recipe
set the model, data path and output_dir
```shell
./bin/funasr-onnx-offline-rtf /path/to/model_dir /path/to/wav.scp quantize(true or false) thread_num
```
The structure of /path/to/models_dir
```
config.yaml, am.mvn, model.onnx(or model_quant.onnx)
```
## [Paraformer-large](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary)
Number of Parameter: 220M
Storage size: 880MB
Storage size after int8-quant: 237MB
CER: 1.95%
CER after int8-quant: 1.95%
### Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz 16core-32processor with avx512_vnni
| concurrent-tasks | processing time(s) | RTF | Speedup Rate |
|---------------------|:------------------:|:--------:|:------------:|
| 1 (onnx fp32) | 2129s | 0.058974 | 17 |
| 1 (onnx int8) | 1020s | 0.02826 | 35 |
| 8 (onnx fp32) | 273s | 0.007553 | 132 |
| 8 (onnx int8) | 128s | 0.003558 | 281 |
| 16 (onnx fp32) | 146s | 0.00403 | 248 |
| 16 (onnx int8) | 67s | 0.001868 | 535 |
| 32 (onnx fp32) | 133s | 0.003672 | 272 |
| 32 (onnx int8) | 64s | 0.001778 | 562 |
| 64 (onnx fp32) | 136s | 0.003771 | 265 |
| 64 (onnx int8) | 67s | 0.001846 | 541 |
| 96 (onnx fp32) | 137s | 0.003788 | 264 |
| 96 (onnx int8) | 68s | 0.001875 | 533 |
### Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz 32core-64processor without avx512_vnni
| concurrent-tasks | processing time(s) | RTF | Speedup Rate |
|---------------------|--------------------|----------|--------------|
| 1 (onnx fp32) | 2903s | 0.080404 | 12 |
| 1 (onnx int8) | 2714s | 0.075168 | 13 |
| 8 (onnx fp32) | 373s | 0.010329 | 97 |
| 8 (onnx int8) | 340s | 0.009428 | 106 |
| 16 (onnx fp32) | 189s | 0.005252 | 190 |
| 16 (onnx int8) | 174s | 0.004817 | 207 |
| 32 (onnx fp32) | 109s | 0.00301 | 332 |
| 32 (onnx int8) | 88s | 0.00245 | 408 |
| 64 (onnx fp32) | 113s | 0.003129 | 320 |
| 64 (onnx int8) | 79s | 0.002201 | 454 |
| 96 (onnx fp32) | 115s | 0.003183 | 314 |
| 96 (onnx int8) | 80s | 0.002222 | 450 |

View File

@@ -0,0 +1 @@
**/__pycache__

View File

@@ -0,0 +1,95 @@
# Service with grpc-python
We can send streaming audio data to server in real-time with grpc client every 10 ms e.g., and get transcribed text when stop speaking.
The audio data is in streaming, the asr inference process is in offline.
## For the Server
### Prepare server environment
#### Backend is modelscope pipeline (default)
Install the modelscope and funasr
```shell
pip install -U modelscope funasr
# For the users in China, you could install with the command:
# pip install -U modelscope funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple
git clone https://github.com/alibaba/FunASR.git && cd FunASR
```
Install the requirements
```shell
cd funasr/runtime/python/grpc
pip install -r requirements_server.txt
```
#### Backend is funasr_onnx (optional)
Install [`funasr_onnx`](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/runtime/python/onnxruntime).
```
pip install funasr_onnx -i https://pypi.Python.org/simple
```
Export the model, more details ref to [export docs](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/runtime/python/onnxruntime).
```shell
python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize True
```
### Generate protobuf file
Run on server, the two generated pb files are both used for server and client
```shell
# paraformer_pb2.py and paraformer_pb2_grpc.py are already generated,
# regenerate it only when you make changes to ./proto/paraformer.proto file.
python -m grpc_tools.protoc --proto_path=./proto -I ./proto --python_out=. --grpc_python_out=./ ./proto/paraformer.proto
```
### Start grpc server
```
# Start server.
python grpc_main_server.py --port 10095 --backend pipeline
```
If you want run server with onnxruntime, please set `backend` and `onnx_dir`.
```
# Start server.
python grpc_main_server.py --port 10095 --backend onnxruntime --onnx_dir /models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch
```
## For the client
### Install the requirements
```shell
git clone https://github.com/alibaba/FunASR.git && cd FunASR
cd funasr/runtime/python/grpc
pip install -r requirements_client.txt
```
### Generate protobuf file
Run on server, the two generated pb files are both used for server and client
```shell
# paraformer_pb2.py and paraformer_pb2_grpc.py are already generated,
# regenerate it only when you make changes to ./proto/paraformer.proto file.
python -m grpc_tools.protoc --proto_path=./proto -I ./proto --python_out=. --grpc_python_out=./ ./proto/paraformer.proto
```
### Start grpc client
```
# Start client.
python grpc_main_client_mic.py --host 127.0.0.1 --port 10095
```
## Workflow in desgin
<div align="left"><img src="proto/workflow.png" width="400"/>
## Reference
We borrow from or refer to some code as:
1)https://github.com/wenet-e2e/wenet/tree/main/runtime/core/grpc
2)https://github.com/Open-Speech-EkStep/inference_service/blob/main/realtime_inference_service.py

View File

@@ -0,0 +1,17 @@
import queue
import paraformer_pb2
def transcribe_audio_bytes(stub, chunk, user='zksz', language='zh-CN', speaking = True, isEnd = False):
req = paraformer_pb2.Request()
if chunk is not None:
req.audio_data = chunk
req.user = user
req.language = language
req.speaking = speaking
req.isEnd = isEnd
my_queue = queue.SimpleQueue()
my_queue.put(req)
return stub.Recognize(iter(my_queue.get, None))

View File

@@ -0,0 +1,62 @@
import grpc
import json
import time
import asyncio
import soundfile as sf
import argparse
from grpc_client import transcribe_audio_bytes
from paraformer_pb2_grpc import ASRStub
# send the audio data once
async def grpc_rec(wav_scp, grpc_uri, asr_user, language):
with grpc.insecure_channel(grpc_uri) as channel:
stub = ASRStub(channel)
for line in wav_scp:
wav_file = line.split()[1]
wav, _ = sf.read(wav_file, dtype='int16')
b = time.time()
response = transcribe_audio_bytes(stub, wav.tobytes(), user=asr_user, language=language, speaking=False, isEnd=False)
resp = response.next()
text = ''
if 'decoding' == resp.action:
resp = response.next()
if 'finish' == resp.action:
text = json.loads(resp.sentence)['text']
response = transcribe_audio_bytes(stub, None, user=asr_user, language=language, speaking=False, isEnd=True)
res= {'text': text, 'time': time.time() - b}
print(res)
async def test(args):
wav_scp = open(args.wav_scp, "r").readlines()
uri = '{}:{}'.format(args.host, args.port)
res = await grpc_rec(wav_scp, uri, args.user_allowed, language = 'zh-CN')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--host",
type=str,
default="127.0.0.1",
required=False,
help="grpc server host ip")
parser.add_argument("--port",
type=int,
default=10108,
required=False,
help="grpc server port")
parser.add_argument("--user_allowed",
type=str,
default="project1_user1",
help="allowed user for grpc client")
parser.add_argument("--sample_rate",
type=int,
default=16000,
help="audio sample_rate from client")
parser.add_argument("--wav_scp",
type=str,
required=True,
help="audio wav scp")
args = parser.parse_args()
asyncio.run(test(args))

View File

@@ -0,0 +1,112 @@
import pyaudio
import grpc
import json
import webrtcvad
import time
import asyncio
import argparse
from grpc_client import transcribe_audio_bytes
from paraformer_pb2_grpc import ASRStub
async def deal_chunk(sig_mic):
global stub,SPEAKING,asr_user,language,sample_rate
if vad.is_speech(sig_mic, sample_rate): #speaking
SPEAKING = True
response = transcribe_audio_bytes(stub, sig_mic, user=asr_user, language=language, speaking = True, isEnd = False) #speaking, send audio to server.
else: #silence
begin_time = 0
if SPEAKING: #means we have some audio recorded, send recognize order to server.
SPEAKING = False
begin_time = int(round(time.time() * 1000))
response = transcribe_audio_bytes(stub, None, user=asr_user, language=language, speaking = False, isEnd = False) #speak end, call server for recognize one sentence
resp = response.next()
if "decoding" == resp.action:
resp = response.next() #TODO, blocking operation may leads to miss some audio clips. C++ multi-threading is preferred.
if "finish" == resp.action:
end_time = int(round(time.time() * 1000))
print (json.loads(resp.sentence))
print ("delay in ms: %d " % (end_time - begin_time))
else:
pass
async def record(host,port,sample_rate,mic_chunk,record_seconds,asr_user,language):
with grpc.insecure_channel('{}:{}'.format(host, port)) as channel:
global stub
stub = ASRStub(channel)
for i in range(0, int(sample_rate / mic_chunk * record_seconds)):
sig_mic = stream.read(mic_chunk,exception_on_overflow = False)
await asyncio.create_task(deal_chunk(sig_mic))
#end grpc
response = transcribe_audio_bytes(stub, None, user=asr_user, language=language, speaking = False, isEnd = True)
print (response.next().action)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--host",
type=str,
default="127.0.0.1",
required=True,
help="grpc server host ip")
parser.add_argument("--port",
type=int,
default=10095,
required=True,
help="grpc server port")
parser.add_argument("--user_allowed",
type=str,
default="project1_user1",
help="allowed user for grpc client")
parser.add_argument("--sample_rate",
type=int,
default=16000,
help="audio sample_rate from client")
parser.add_argument("--mic_chunk",
type=int,
default=160,
help="chunk size for mic")
parser.add_argument("--record_seconds",
type=int,
default=120,
help="run specified seconds then exit ")
args = parser.parse_args()
SPEAKING = False
asr_user = args.user_allowed
sample_rate = args.sample_rate
language = 'zh-CN'
vad = webrtcvad.Vad()
vad.set_mode(1)
FORMAT = pyaudio.paInt16
CHANNELS = 1
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT,
channels=CHANNELS,
rate=args.sample_rate,
input=True,
frames_per_buffer=args.mic_chunk)
print("* recording")
asyncio.run(record(args.host,args.port,args.sample_rate,args.mic_chunk,args.record_seconds,args.user_allowed,language))
stream.stop_stream()
stream.close()
p.terminate()
print("recording stop")

View File

@@ -0,0 +1,68 @@
import grpc
from concurrent import futures
import argparse
import paraformer_pb2_grpc
from grpc_server import ASRServicer
def serve(args):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10),
# interceptors=(AuthInterceptor('Bearer mysecrettoken'),)
)
paraformer_pb2_grpc.add_ASRServicer_to_server(
ASRServicer(args.user_allowed, args.model, args.sample_rate, args.backend, args.onnx_dir, vad_model=args.vad_model, punc_model=args.punc_model), server)
port = "[::]:" + str(args.port)
server.add_insecure_port(port)
server.start()
print("grpc server started!")
server.wait_for_termination()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--port",
type=int,
default=10095,
required=True,
help="grpc server port")
parser.add_argument("--user_allowed",
type=str,
default="project1_user1|project1_user2|project2_user3",
help="allowed user for grpc client")
parser.add_argument("--model",
type=str,
default="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
help="model from modelscope")
parser.add_argument("--vad_model",
type=str,
default="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
help="model from modelscope")
parser.add_argument("--punc_model",
type=str,
default="",
help="model from modelscope")
parser.add_argument("--sample_rate",
type=int,
default=16000,
help="audio sample_rate from client")
parser.add_argument("--backend",
type=str,
default="pipeline",
choices=("pipeline", "onnxruntime"),
help="backend, optional modelscope pipeline or onnxruntime")
parser.add_argument("--onnx_dir",
type=str,
default="/nfs/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
help="onnx model dir")
args = parser.parse_args()
serve(args)

View File

@@ -0,0 +1,132 @@
from concurrent import futures
import grpc
import json
import time
import paraformer_pb2_grpc
from paraformer_pb2 import Response
class ASRServicer(paraformer_pb2_grpc.ASRServicer):
def __init__(self, user_allowed, model, sample_rate, backend, onnx_dir, vad_model='', punc_model=''):
print("ASRServicer init")
self.backend = backend
self.init_flag = 0
self.client_buffers = {}
self.client_transcription = {}
self.auth_user = user_allowed.split("|")
if self.backend == "pipeline":
try:
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
except ImportError:
raise ImportError(f"Please install modelscope")
self.inference_16k_pipeline = pipeline(task=Tasks.auto_speech_recognition, model=model, vad_model=vad_model, punc_model=punc_model)
elif self.backend == "onnxruntime":
try:
from funasr_local_onnx import Paraformer
except ImportError:
raise ImportError(f"Please install onnxruntime environment")
self.inference_16k_pipeline = Paraformer(model_dir=onnx_dir)
self.sample_rate = sample_rate
def clear_states(self, user):
self.clear_buffers(user)
self.clear_transcriptions(user)
def clear_buffers(self, user):
if user in self.client_buffers:
del self.client_buffers[user]
def clear_transcriptions(self, user):
if user in self.client_transcription:
del self.client_transcription[user]
def disconnect(self, user):
self.clear_states(user)
print("Disconnecting user: %s" % str(user))
def Recognize(self, request_iterator, context):
for req in request_iterator:
if req.user not in self.auth_user:
result = {}
result["success"] = False
result["detail"] = "Not Authorized user: %s " % req.user
result["text"] = ""
yield Response(sentence=json.dumps(result), user=req.user, action="terminate", language=req.language)
elif req.isEnd: #end grpc
print("asr end")
self.disconnect(req.user)
result = {}
result["success"] = True
result["detail"] = "asr end"
result["text"] = ""
yield Response(sentence=json.dumps(result), user=req.user, action="terminate",language=req.language)
elif req.speaking: #continue speaking
if req.audio_data is not None and len(req.audio_data) > 0:
if req.user in self.client_buffers:
self.client_buffers[req.user] += req.audio_data #append audio
else:
self.client_buffers[req.user] = req.audio_data
result = {}
result["success"] = True
result["detail"] = "speaking"
result["text"] = ""
yield Response(sentence=json.dumps(result), user=req.user, action="speaking", language=req.language)
elif not req.speaking: #silence
if req.user not in self.client_buffers:
result = {}
result["success"] = True
result["detail"] = "waiting_for_more_voice"
result["text"] = ""
yield Response(sentence=json.dumps(result), user=req.user, action="waiting", language=req.language)
else:
begin_time = int(round(time.time() * 1000))
tmp_data = self.client_buffers[req.user]
self.clear_states(req.user)
result = {}
result["success"] = True
result["detail"] = "decoding data: %d bytes" % len(tmp_data)
result["text"] = ""
yield Response(sentence=json.dumps(result), user=req.user, action="decoding", language=req.language)
if len(tmp_data) < 9600: #min input_len for asr model , 300ms
end_time = int(round(time.time() * 1000))
delay_str = str(end_time - begin_time)
result = {}
result["success"] = True
result["detail"] = "waiting_for_more_voice"
result["server_delay_ms"] = delay_str
result["text"] = ""
print ("user: %s , delay(ms): %s, info: %s " % (req.user, delay_str, "waiting_for_more_voice"))
yield Response(sentence=json.dumps(result), user=req.user, action="waiting", language=req.language)
else:
if self.backend == "pipeline":
asr_result = self.inference_16k_pipeline(audio_in=tmp_data, audio_fs = self.sample_rate)
if "text" in asr_result:
asr_result = asr_result['text']
else:
asr_result = ""
elif self.backend == "onnxruntime":
from funasr_local_onnx.utils.frontend import load_bytes
array = load_bytes(tmp_data)
asr_result = self.inference_16k_pipeline(array)[0]
end_time = int(round(time.time() * 1000))
delay_str = str(end_time - begin_time)
print ("user: %s , delay(ms): %s, text: %s " % (req.user, delay_str, asr_result))
result = {}
result["success"] = True
result["detail"] = "finish_sentence"
result["server_delay_ms"] = delay_str
result["text"] = asr_result
yield Response(sentence=json.dumps(result), user=req.user, action="finish", language=req.language)
else:
result = {}
result["success"] = False
result["detail"] = "error, no condition matched! Unknown reason."
result["text"] = ""
self.disconnect(req.user)
yield Response(sentence=json.dumps(result), user=req.user, action="terminate", language=req.language)

View File

@@ -0,0 +1,30 @@
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: paraformer.proto
"""Generated protocol buffer code."""
from google.protobuf.internal import builder as _builder
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x10paraformer.proto\x12\nparaformer\"^\n\x07Request\x12\x12\n\naudio_data\x18\x01 \x01(\x0c\x12\x0c\n\x04user\x18\x02 \x01(\t\x12\x10\n\x08language\x18\x03 \x01(\t\x12\x10\n\x08speaking\x18\x04 \x01(\x08\x12\r\n\x05isEnd\x18\x05 \x01(\x08\"L\n\x08Response\x12\x10\n\x08sentence\x18\x01 \x01(\t\x12\x0c\n\x04user\x18\x02 \x01(\t\x12\x10\n\x08language\x18\x03 \x01(\t\x12\x0e\n\x06\x61\x63tion\x18\x04 \x01(\t2C\n\x03\x41SR\x12<\n\tRecognize\x12\x13.paraformer.Request\x1a\x14.paraformer.Response\"\x00(\x01\x30\x01\x42\x16\n\x07\x65x.grpc\xa2\x02\nparaformerb\x06proto3')
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals())
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'paraformer_pb2', globals())
if _descriptor._USE_C_DESCRIPTORS == False:
DESCRIPTOR._options = None
DESCRIPTOR._serialized_options = b'\n\007ex.grpc\242\002\nparaformer'
_REQUEST._serialized_start=32
_REQUEST._serialized_end=126
_RESPONSE._serialized_start=128
_RESPONSE._serialized_end=204
_ASR._serialized_start=206
_ASR._serialized_end=273
# @@protoc_insertion_point(module_scope)

View File

@@ -0,0 +1,66 @@
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import paraformer_pb2 as paraformer__pb2
class ASRStub(object):
"""Missing associated documentation comment in .proto file."""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Recognize = channel.stream_stream(
'/paraformer.ASR/Recognize',
request_serializer=paraformer__pb2.Request.SerializeToString,
response_deserializer=paraformer__pb2.Response.FromString,
)
class ASRServicer(object):
"""Missing associated documentation comment in .proto file."""
def Recognize(self, request_iterator, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_ASRServicer_to_server(servicer, server):
rpc_method_handlers = {
'Recognize': grpc.stream_stream_rpc_method_handler(
servicer.Recognize,
request_deserializer=paraformer__pb2.Request.FromString,
response_serializer=paraformer__pb2.Response.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'paraformer.ASR', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class ASR(object):
"""Missing associated documentation comment in .proto file."""
@staticmethod
def Recognize(request_iterator,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.stream_stream(request_iterator, target, '/paraformer.ASR/Recognize',
paraformer__pb2.Request.SerializeToString,
paraformer__pb2.Response.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)

View File

@@ -0,0 +1,25 @@
```
service ASR { //grpc service
rpc Recognize (stream Request) returns (stream Response) {} //Stub
}
message Request { //request data
bytes audio_data = 1; //audio data in bytes.
string user = 2; //user allowed.
string language = 3; //language, zh-CN for now.
bool speaking = 4; //flag for speaking.
bool isEnd = 5; //flag for end. set isEnd to true when you stop asr:
//vad:is_speech then speaking=True & isEnd = False, audio data will be appended for the specfied user.
//vad:silence then speaking=False & isEnd = False, clear audio buffer and do asr inference.
}
message Response { //response data.
string sentence = 1; //json, includes flag for success and asr text .
string user = 2; //same to request user.
string language = 3; //same to request language.
string action = 4; //server status:
//terminateasr stopped;
//speakinguser is speaking, audio data is appended;
//decoding: server is decoding;
//finish: get asr text, most used.
}

View File

@@ -0,0 +1,38 @@
// Copyright (c) 2021 Ximalaya Speech Team (Xiang Lyu)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
option java_package = "ex.grpc";
option objc_class_prefix = "paraformer";
package paraformer;
service ASR {
rpc Recognize (stream Request) returns (stream Response) {}
}
message Request {
bytes audio_data = 1;
string user = 2;
string language = 3;
bool speaking = 4;
bool isEnd = 5;
}
message Response {
string sentence = 1;
string user = 2;
string language = 3;
string action = 4;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

View File

@@ -0,0 +1,4 @@
pyaudio
webrtcvad
grpcio
grpcio-tools

View File

@@ -0,0 +1,2 @@
grpcio
grpcio-tools

View File

@@ -0,0 +1,73 @@
# Libtorch-python
## Export the model
### Install [modelscope and funasr](https://github.com/alibaba-damo-academy/FunASR#installation)
```shell
# pip3 install torch torchaudio
pip install -U modelscope funasr
# For the users in China, you could install with the command:
# pip install -U modelscope funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple
pip install torch-quant # Optional, for torchscript quantization
pip install onnx onnxruntime # Optional, for onnx quantization
```
### Export [onnx model](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export)
```shell
python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type torch --quantize True
```
## Install the `funasr_torch`.
install from pip
```shell
pip install -U funasr_torch
# For the users in China, you could install with the command:
# pip install -U funasr_torch -i https://mirror.sjtu.edu.cn/pypi/web/simple
```
or install from source code
```shell
git clone https://github.com/alibaba/FunASR.git && cd FunASR
cd funasr/runtime/python/libtorch
pip install -e ./
# For the users in China, you could install with the command:
# pip install -e ./ -i https://mirror.sjtu.edu.cn/pypi/web/simple
```
## Run the demo.
- Model_dir: the model path, which contains `model.torchscripts`, `config.yaml`, `am.mvn`.
- Input: wav formt file, support formats: `str, np.ndarray, List[str]`
- Output: `List[str]`: recognition result.
- Example:
```python
from funasr_torch import Paraformer
model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model = Paraformer(model_dir, batch_size=1)
wav_path = ['/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav']
result = model(wav_path)
print(result)
```
## Performance benchmark
Please ref to [benchmark](https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/runtime/python/benchmark_libtorch.md)
## Speed
EnvironmentIntel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz
Test [wav, 5.53s, 100 times avg.](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav)
| Backend | RTF (FP32) |
|:--------:|:----------:|
| Pytorch | 0.110 |
| Libtorch | 0.048 |
| Onnx | 0.038 |
## Acknowledge
This project is maintained by [FunASR community](https://github.com/alibaba-damo-academy/FunASR).

View File

@@ -0,0 +1,15 @@
from funasr_local_torch import Paraformer
model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model = Paraformer(model_dir, batch_size=1) # cpu
# model = Paraformer(model_dir, batch_size=1, device_id=0) # gpu
# when using paraformer-large-vad-punc model, you can set plot_timestamp_to="./xx.png" to get figure of alignment besides timestamps
# model = Paraformer(model_dir, batch_size=1, plot_timestamp_to="test.png")
wav_path = "YourPath/xx.wav"
result = model(wav_path)
print(result)

View File

@@ -0,0 +1,2 @@
# -*- encoding: utf-8 -*-
from .paraformer_bin import Paraformer

View File

@@ -0,0 +1,197 @@
# -*- encoding: utf-8 -*-
import os.path
from pathlib import Path
from typing import List, Union, Tuple
import copy
import librosa
import numpy as np
from .utils.utils import (CharTokenizer, Hypothesis,
TokenIDConverter, get_logger,
read_yaml)
from .utils.postprocess_utils import sentence_postprocess
from .utils.frontend import WavFrontend
from .utils.timestamp_utils import time_stamp_lfr6_onnx
logging = get_logger()
import torch
class Paraformer():
def __init__(self, model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
plot_timestamp_to: str = "",
quantize: bool = False,
intra_op_num_threads: int = 1,
):
if not Path(model_dir).exists():
raise FileNotFoundError(f'{model_dir} does not exist.')
model_file = os.path.join(model_dir, 'model.torchscripts')
if quantize:
model_file = os.path.join(model_dir, 'model_quant.torchscripts')
config_file = os.path.join(model_dir, 'config.yaml')
cmvn_file = os.path.join(model_dir, 'am.mvn')
config = read_yaml(config_file)
self.converter = TokenIDConverter(config['token_list'])
self.tokenizer = CharTokenizer()
self.frontend = WavFrontend(
cmvn_file=cmvn_file,
**config['frontend_conf']
)
self.ort_infer = torch.jit.load(model_file)
self.batch_size = batch_size
self.device_id = device_id
self.plot_timestamp_to = plot_timestamp_to
if "predictor_bias" in config['model_conf'].keys():
self.pred_bias = config['model_conf']['predictor_bias']
else:
self.pred_bias = 0
def __call__(self, wav_content: Union[str, np.ndarray, List[str]], **kwargs) -> List:
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
waveform_nums = len(waveform_list)
asr_res = []
for beg_idx in range(0, waveform_nums, self.batch_size):
end_idx = min(waveform_nums, beg_idx + self.batch_size)
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
try:
with torch.no_grad():
if int(self.device_id) == -1:
outputs = self.ort_infer(feats, feats_len)
am_scores, valid_token_lens = outputs[0], outputs[1]
else:
outputs = self.ort_infer(feats.cuda(), feats_len.cuda())
am_scores, valid_token_lens = outputs[0].cpu(), outputs[1].cpu()
if len(outputs) == 4:
# for BiCifParaformer Inference
us_alphas, us_peaks = outputs[2], outputs[3]
else:
us_alphas, us_peaks = None, None
except:
#logging.warning(traceback.format_exc())
logging.warning("input wav is silence or noise")
preds = ['']
else:
preds = self.decode(am_scores, valid_token_lens)
if us_peaks is None:
for pred in preds:
pred = sentence_postprocess(pred)
asr_res.append({'preds': pred})
else:
for pred, us_peaks_ in zip(preds, us_peaks):
raw_tokens = pred
timestamp, timestamp_raw = time_stamp_lfr6_onnx(us_peaks_, copy.copy(raw_tokens))
text_proc, timestamp_proc, _ = sentence_postprocess(raw_tokens, timestamp_raw)
# logging.warning(timestamp)
if len(self.plot_timestamp_to):
self.plot_wave_timestamp(waveform_list[0], timestamp, self.plot_timestamp_to)
asr_res.append({'preds': text_proc, 'timestamp': timestamp_proc, "raw_tokens": raw_tokens})
return asr_res
def plot_wave_timestamp(self, wav, text_timestamp, dest):
# TODO: Plot the wav and timestamp results with matplotlib
import matplotlib
matplotlib.use('Agg')
matplotlib.rc("font", family='Alibaba PuHuiTi') # set it to a font that your system supports
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots(figsize=(11, 3.5), dpi=320)
ax2 = ax1.twinx()
ax2.set_ylim([0, 2.0])
# plot waveform
ax1.set_ylim([-0.3, 0.3])
time = np.arange(wav.shape[0]) / 16000
ax1.plot(time, wav/wav.max()*0.3, color='gray', alpha=0.4)
# plot lines and text
for (char, start, end) in text_timestamp:
ax1.vlines(start, -0.3, 0.3, ls='--')
ax1.vlines(end, -0.3, 0.3, ls='--')
x_adj = 0.045 if char != '<sil>' else 0.12
ax1.text((start + end) * 0.5 - x_adj, 0, char)
# plt.legend()
plotname = "{}/timestamp.png".format(dest)
plt.savefig(plotname, bbox_inches='tight')
def load_data(self,
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
def load_wav(path: str) -> np.ndarray:
waveform, _ = librosa.load(path, sr=fs)
return waveform
if isinstance(wav_content, np.ndarray):
return [wav_content]
if isinstance(wav_content, str):
return [load_wav(wav_content)]
if isinstance(wav_content, list):
return [load_wav(path) for path in wav_content]
raise TypeError(
f'The type of {wav_content} is not in [str, np.ndarray, list]')
def extract_feat(self,
waveform_list: List[np.ndarray]
) -> Tuple[np.ndarray, np.ndarray]:
feats, feats_len = [], []
for waveform in waveform_list:
speech, _ = self.frontend.fbank(waveform)
feat, feat_len = self.frontend.lfr_cmvn(speech)
feats.append(feat)
feats_len.append(feat_len)
feats = self.pad_feats(feats, np.max(feats_len))
feats_len = np.array(feats_len).astype(np.int32)
feats = torch.from_numpy(feats).type(torch.float32)
feats_len = torch.from_numpy(feats_len).type(torch.int32)
return feats, feats_len
@staticmethod
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
pad_width = ((0, max_feat_len - cur_len), (0, 0))
return np.pad(feat, pad_width, 'constant', constant_values=0)
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
feats = np.array(feat_res).astype(np.float32)
return feats
def infer(self, feats: np.ndarray,
feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer([feats, feats_len])
return outputs
def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]:
return [self.decode_one(am_score, token_num)
for am_score, token_num in zip(am_scores, token_nums)]
def decode_one(self,
am_score: np.ndarray,
valid_token_num: int) -> List[str]:
yseq = am_score.argmax(axis=-1)
score = am_score.max(axis=-1)
score = np.sum(score, axis=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
# asr_model.sos:1 asr_model.eos:2
yseq = np.array([1] + yseq.tolist() + [2])
hyp = Hypothesis(yseq=yseq, score=score)
# remove sos/eos and get results
last_pos = -1
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x not in (0, 2), token_int))
# Change integer-ids to tokens
token = self.converter.ids2tokens(token_int)
token = token[:valid_token_num-self.pred_bias]
# texts = sentence_postprocess(token)
return token

View File

@@ -0,0 +1,157 @@
import os
import numpy as np
import sys
def compute_wer(ref_file,
hyp_file,
cer_detail_file):
rst = {
'Wrd': 0,
'Corr': 0,
'Ins': 0,
'Del': 0,
'Sub': 0,
'Snt': 0,
'Err': 0.0,
'S.Err': 0.0,
'wrong_words': 0,
'wrong_sentences': 0
}
hyp_dict = {}
ref_dict = {}
with open(hyp_file, 'r') as hyp_reader:
for line in hyp_reader:
key = line.strip().split()[0]
value = line.strip().split()[1:]
hyp_dict[key] = value
with open(ref_file, 'r') as ref_reader:
for line in ref_reader:
key = line.strip().split()[0]
value = line.strip().split()[1:]
ref_dict[key] = value
cer_detail_writer = open(cer_detail_file, 'w')
for hyp_key in hyp_dict:
if hyp_key in ref_dict:
out_item = compute_wer_by_line(hyp_dict[hyp_key], ref_dict[hyp_key])
rst['Wrd'] += out_item['nwords']
rst['Corr'] += out_item['cor']
rst['wrong_words'] += out_item['wrong']
rst['Ins'] += out_item['ins']
rst['Del'] += out_item['del']
rst['Sub'] += out_item['sub']
rst['Snt'] += 1
if out_item['wrong'] > 0:
rst['wrong_sentences'] += 1
cer_detail_writer.write(hyp_key + print_cer_detail(out_item) + '\n')
cer_detail_writer.write("ref:" + '\t' + "".join(ref_dict[hyp_key]) + '\n')
cer_detail_writer.write("hyp:" + '\t' + "".join(hyp_dict[hyp_key]) + '\n')
if rst['Wrd'] > 0:
rst['Err'] = round(rst['wrong_words'] * 100 / rst['Wrd'], 2)
if rst['Snt'] > 0:
rst['S.Err'] = round(rst['wrong_sentences'] * 100 / rst['Snt'], 2)
cer_detail_writer.write('\n')
cer_detail_writer.write("%WER " + str(rst['Err']) + " [ " + str(rst['wrong_words'])+ " / " + str(rst['Wrd']) +
", " + str(rst['Ins']) + " ins, " + str(rst['Del']) + " del, " + str(rst['Sub']) + " sub ]" + '\n')
cer_detail_writer.write("%SER " + str(rst['S.Err']) + " [ " + str(rst['wrong_sentences']) + " / " + str(rst['Snt']) + " ]" + '\n')
cer_detail_writer.write("Scored " + str(len(hyp_dict)) + " sentences, " + str(len(hyp_dict) - rst['Snt']) + " not present in hyp." + '\n')
def compute_wer_by_line(hyp,
ref):
hyp = list(map(lambda x: x.lower(), hyp))
ref = list(map(lambda x: x.lower(), ref))
len_hyp = len(hyp)
len_ref = len(ref)
cost_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int16)
ops_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int8)
for i in range(len_hyp + 1):
cost_matrix[i][0] = i
for j in range(len_ref + 1):
cost_matrix[0][j] = j
for i in range(1, len_hyp + 1):
for j in range(1, len_ref + 1):
if hyp[i - 1] == ref[j - 1]:
cost_matrix[i][j] = cost_matrix[i - 1][j - 1]
else:
substitution = cost_matrix[i - 1][j - 1] + 1
insertion = cost_matrix[i - 1][j] + 1
deletion = cost_matrix[i][j - 1] + 1
compare_val = [substitution, insertion, deletion]
min_val = min(compare_val)
operation_idx = compare_val.index(min_val) + 1
cost_matrix[i][j] = min_val
ops_matrix[i][j] = operation_idx
match_idx = []
i = len_hyp
j = len_ref
rst = {
'nwords': len_ref,
'cor': 0,
'wrong': 0,
'ins': 0,
'del': 0,
'sub': 0
}
while i >= 0 or j >= 0:
i_idx = max(0, i)
j_idx = max(0, j)
if ops_matrix[i_idx][j_idx] == 0: # correct
if i - 1 >= 0 and j - 1 >= 0:
match_idx.append((j - 1, i - 1))
rst['cor'] += 1
i -= 1
j -= 1
elif ops_matrix[i_idx][j_idx] == 2: # insert
i -= 1
rst['ins'] += 1
elif ops_matrix[i_idx][j_idx] == 3: # delete
j -= 1
rst['del'] += 1
elif ops_matrix[i_idx][j_idx] == 1: # substitute
i -= 1
j -= 1
rst['sub'] += 1
if i < 0 and j >= 0:
rst['del'] += 1
elif j < 0 and i >= 0:
rst['ins'] += 1
match_idx.reverse()
wrong_cnt = cost_matrix[len_hyp][len_ref]
rst['wrong'] = wrong_cnt
return rst
def print_cer_detail(rst):
return ("(" + "nwords=" + str(rst['nwords']) + ",cor=" + str(rst['cor'])
+ ",ins=" + str(rst['ins']) + ",del=" + str(rst['del']) + ",sub="
+ str(rst['sub']) + ") corr:" + '{:.2%}'.format(rst['cor']/rst['nwords'])
+ ",cer:" + '{:.2%}'.format(rst['wrong']/rst['nwords']))
if __name__ == '__main__':
if len(sys.argv) != 4:
print("usage : python compute-wer.py test.ref test.hyp test.wer")
sys.exit(0)
ref_file = sys.argv[1]
hyp_file = sys.argv[2]
cer_detail_file = sys.argv[3]
compute_wer(ref_file, hyp_file, cer_detail_file)

View File

@@ -0,0 +1,191 @@
# -*- encoding: utf-8 -*-
from pathlib import Path
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union
import numpy as np
from typeguard import check_argument_types
import kaldi_native_fbank as knf
root_dir = Path(__file__).resolve().parent
logger_initialized = {}
class WavFrontend():
"""Conventional frontend structure for ASR.
"""
def __init__(
self,
cmvn_file: str = None,
fs: int = 16000,
window: str = 'hamming',
n_mels: int = 80,
frame_length: int = 25,
frame_shift: int = 10,
lfr_m: int = 1,
lfr_n: int = 1,
dither: float = 1.0,
**kwargs,
) -> None:
check_argument_types()
opts = knf.FbankOptions()
opts.frame_opts.samp_freq = fs
opts.frame_opts.dither = dither
opts.frame_opts.window_type = window
opts.frame_opts.frame_shift_ms = float(frame_shift)
opts.frame_opts.frame_length_ms = float(frame_length)
opts.mel_opts.num_bins = n_mels
opts.energy_floor = 0
opts.frame_opts.snip_edges = True
opts.mel_opts.debug_mel = False
self.opts = opts
self.lfr_m = lfr_m
self.lfr_n = lfr_n
self.cmvn_file = cmvn_file
if self.cmvn_file:
self.cmvn = self.load_cmvn()
self.fbank_fn = None
self.fbank_beg_idx = 0
self.reset_status()
def fbank(self,
waveform: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
waveform = waveform * (1 << 15)
self.fbank_fn = knf.OnlineFbank(self.opts)
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
frames = self.fbank_fn.num_frames_ready
mat = np.empty([frames, self.opts.mel_opts.num_bins])
for i in range(frames):
mat[i, :] = self.fbank_fn.get_frame(i)
feat = mat.astype(np.float32)
feat_len = np.array(mat.shape[0]).astype(np.int32)
return feat, feat_len
def fbank_online(self,
waveform: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
waveform = waveform * (1 << 15)
# self.fbank_fn = knf.OnlineFbank(self.opts)
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
frames = self.fbank_fn.num_frames_ready
mat = np.empty([frames, self.opts.mel_opts.num_bins])
for i in range(self.fbank_beg_idx, frames):
mat[i, :] = self.fbank_fn.get_frame(i)
# self.fbank_beg_idx += (frames-self.fbank_beg_idx)
feat = mat.astype(np.float32)
feat_len = np.array(mat.shape[0]).astype(np.int32)
return feat, feat_len
def reset_status(self):
self.fbank_fn = knf.OnlineFbank(self.opts)
self.fbank_beg_idx = 0
def lfr_cmvn(self, feat: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
if self.lfr_m != 1 or self.lfr_n != 1:
feat = self.apply_lfr(feat, self.lfr_m, self.lfr_n)
if self.cmvn_file:
feat = self.apply_cmvn(feat)
feat_len = np.array(feat.shape[0]).astype(np.int32)
return feat, feat_len
@staticmethod
def apply_lfr(inputs: np.ndarray, lfr_m: int, lfr_n: int) -> np.ndarray:
LFR_inputs = []
T = inputs.shape[0]
T_lfr = int(np.ceil(T / lfr_n))
left_padding = np.tile(inputs[0], ((lfr_m - 1) // 2, 1))
inputs = np.vstack((left_padding, inputs))
T = T + (lfr_m - 1) // 2
for i in range(T_lfr):
if lfr_m <= T - i * lfr_n:
LFR_inputs.append(
(inputs[i * lfr_n:i * lfr_n + lfr_m]).reshape(1, -1))
else:
# process last LFR frame
num_padding = lfr_m - (T - i * lfr_n)
frame = inputs[i * lfr_n:].reshape(-1)
for _ in range(num_padding):
frame = np.hstack((frame, inputs[-1]))
LFR_inputs.append(frame)
LFR_outputs = np.vstack(LFR_inputs).astype(np.float32)
return LFR_outputs
def apply_cmvn(self, inputs: np.ndarray) -> np.ndarray:
"""
Apply CMVN with mvn data
"""
frame, dim = inputs.shape
means = np.tile(self.cmvn[0:1, :dim], (frame, 1))
vars = np.tile(self.cmvn[1:2, :dim], (frame, 1))
inputs = (inputs + means) * vars
return inputs
def load_cmvn(self,) -> np.ndarray:
with open(self.cmvn_file, 'r', encoding='utf-8') as f:
lines = f.readlines()
means_list = []
vars_list = []
for i in range(len(lines)):
line_item = lines[i].split()
if line_item[0] == '<AddShift>':
line_item = lines[i + 1].split()
if line_item[0] == '<LearnRateCoef>':
add_shift_line = line_item[3:(len(line_item) - 1)]
means_list = list(add_shift_line)
continue
elif line_item[0] == '<Rescale>':
line_item = lines[i + 1].split()
if line_item[0] == '<LearnRateCoef>':
rescale_line = line_item[3:(len(line_item) - 1)]
vars_list = list(rescale_line)
continue
means = np.array(means_list).astype(np.float64)
vars = np.array(vars_list).astype(np.float64)
cmvn = np.array([means, vars])
return cmvn
def load_bytes(input):
middle_data = np.frombuffer(input, dtype=np.int16)
middle_data = np.asarray(middle_data)
if middle_data.dtype.kind not in 'iu':
raise TypeError("'middle_data' must be an array of integers")
dtype = np.dtype('float32')
if dtype.kind != 'f':
raise TypeError("'dtype' must be a floating point type")
i = np.iinfo(middle_data.dtype)
abs_max = 2 ** (i.bits - 1)
offset = i.min + abs_max
array = np.frombuffer((middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32)
return array
def test():
path = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav"
import librosa
cmvn_file = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/am.mvn"
config_file = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/config.yaml"
from funasr_local.runtime.python.onnxruntime.rapid_paraformer.utils.utils import read_yaml
config = read_yaml(config_file)
waveform, _ = librosa.load(path, sr=None)
frontend = WavFrontend(
cmvn_file=cmvn_file,
**config['frontend_conf'],
)
speech, _ = frontend.fbank_online(waveform) #1d, (sample,), numpy
feat, feat_len = frontend.lfr_cmvn(speech) # 2d, (frame, 450), np.float32 -> torch, torch.from_numpy(), dtype, (1, frame, 450)
frontend.reset_status() # clear cache
return feat, feat_len
if __name__ == '__main__':
test()

View File

@@ -0,0 +1,240 @@
# Copyright (c) Alibaba, Inc. and its affiliates.
import string
import logging
from typing import Any, List, Union
def isChinese(ch: str):
if '\u4e00' <= ch <= '\u9fff' or '\u0030' <= ch <= '\u0039':
return True
return False
def isAllChinese(word: Union[List[Any], str]):
word_lists = []
for i in word:
cur = i.replace(' ', '')
cur = cur.replace('</s>', '')
cur = cur.replace('<s>', '')
word_lists.append(cur)
if len(word_lists) == 0:
return False
for ch in word_lists:
if isChinese(ch) is False:
return False
return True
def isAllAlpha(word: Union[List[Any], str]):
word_lists = []
for i in word:
cur = i.replace(' ', '')
cur = cur.replace('</s>', '')
cur = cur.replace('<s>', '')
word_lists.append(cur)
if len(word_lists) == 0:
return False
for ch in word_lists:
if ch.isalpha() is False and ch != "'":
return False
elif ch.isalpha() is True and isChinese(ch) is True:
return False
return True
# def abbr_dispose(words: List[Any]) -> List[Any]:
def abbr_dispose(words: List[Any], time_stamp: List[List] = None) -> List[Any]:
words_size = len(words)
word_lists = []
abbr_begin = []
abbr_end = []
last_num = -1
ts_lists = []
ts_nums = []
ts_index = 0
for num in range(words_size):
if num <= last_num:
continue
if len(words[num]) == 1 and words[num].encode('utf-8').isalpha():
if num + 1 < words_size and words[
num + 1] == ' ' and num + 2 < words_size and len(
words[num +
2]) == 1 and words[num +
2].encode('utf-8').isalpha():
# found the begin of abbr
abbr_begin.append(num)
num += 2
abbr_end.append(num)
# to find the end of abbr
while True:
num += 1
if num < words_size and words[num] == ' ':
num += 1
if num < words_size and len(
words[num]) == 1 and words[num].encode(
'utf-8').isalpha():
abbr_end.pop()
abbr_end.append(num)
last_num = num
else:
break
else:
break
for num in range(words_size):
if words[num] == ' ':
ts_nums.append(ts_index)
else:
ts_nums.append(ts_index)
ts_index += 1
last_num = -1
for num in range(words_size):
if num <= last_num:
continue
if num in abbr_begin:
if time_stamp is not None:
begin = time_stamp[ts_nums[num]][0]
word_lists.append(words[num].upper())
num += 1
while num < words_size:
if num in abbr_end:
word_lists.append(words[num].upper())
last_num = num
break
else:
if words[num].encode('utf-8').isalpha():
word_lists.append(words[num].upper())
num += 1
if time_stamp is not None:
end = time_stamp[ts_nums[num]][1]
ts_lists.append([begin, end])
else:
word_lists.append(words[num])
if time_stamp is not None and words[num] != ' ':
begin = time_stamp[ts_nums[num]][0]
end = time_stamp[ts_nums[num]][1]
ts_lists.append([begin, end])
begin = end
if time_stamp is not None:
return word_lists, ts_lists
else:
return word_lists
def sentence_postprocess(words: List[Any], time_stamp: List[List] = None):
middle_lists = []
word_lists = []
word_item = ''
ts_lists = []
# wash words lists
for i in words:
word = ''
if isinstance(i, str):
word = i
else:
word = i.decode('utf-8')
if word in ['<s>', '</s>', '<unk>']:
continue
else:
middle_lists.append(word)
# all chinese characters
if isAllChinese(middle_lists):
for i, ch in enumerate(middle_lists):
word_lists.append(ch.replace(' ', ''))
if time_stamp is not None:
ts_lists = time_stamp
# all alpha characters
elif isAllAlpha(middle_lists):
ts_flag = True
for i, ch in enumerate(middle_lists):
if ts_flag and time_stamp is not None:
begin = time_stamp[i][0]
end = time_stamp[i][1]
word = ''
if '@@' in ch:
word = ch.replace('@@', '')
word_item += word
if time_stamp is not None:
ts_flag = False
end = time_stamp[i][1]
else:
word_item += ch
word_lists.append(word_item)
word_lists.append(' ')
word_item = ''
if time_stamp is not None:
ts_flag = True
end = time_stamp[i][1]
ts_lists.append([begin, end])
begin = end
# mix characters
else:
alpha_blank = False
ts_flag = True
begin = -1
end = -1
for i, ch in enumerate(middle_lists):
if ts_flag and time_stamp is not None:
begin = time_stamp[i][0]
end = time_stamp[i][1]
word = ''
if isAllChinese(ch):
if alpha_blank is True:
word_lists.pop()
word_lists.append(ch)
alpha_blank = False
if time_stamp is not None:
ts_flag = True
ts_lists.append([begin, end])
begin = end
elif '@@' in ch:
word = ch.replace('@@', '')
word_item += word
alpha_blank = False
if time_stamp is not None:
ts_flag = False
end = time_stamp[i][1]
elif isAllAlpha(ch):
word_item += ch
word_lists.append(word_item)
word_lists.append(' ')
word_item = ''
alpha_blank = True
if time_stamp is not None:
ts_flag = True
end = time_stamp[i][1]
ts_lists.append([begin, end])
begin = end
else:
raise ValueError('invalid character: {}'.format(ch))
if time_stamp is not None:
word_lists, ts_lists = abbr_dispose(word_lists, ts_lists)
real_word_lists = []
for ch in word_lists:
if ch != ' ':
real_word_lists.append(ch)
sentence = ' '.join(real_word_lists).strip()
return sentence, ts_lists, real_word_lists
else:
word_lists = abbr_dispose(word_lists)
real_word_lists = []
for ch in word_lists:
if ch != ' ':
real_word_lists.append(ch)
sentence = ''.join(word_lists).strip()
return sentence, real_word_lists

View File

@@ -0,0 +1,59 @@
import numpy as np
def time_stamp_lfr6_onnx(us_cif_peak, char_list, begin_time=0.0, total_offset=-1.5):
if not len(char_list):
return []
START_END_THRESHOLD = 5
MAX_TOKEN_DURATION = 30
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
cif_peak = us_cif_peak.reshape(-1)
num_frames = cif_peak.shape[-1]
if char_list[-1] == '</s>':
char_list = char_list[:-1]
# char_list = [i for i in text]
timestamp_list = []
new_char_list = []
# for bicif model trained with large data, cif2 actually fires when a character starts
# so treat the frames between two peaks as the duration of the former token
fire_place = np.where(cif_peak>1.0-1e-4)[0] + total_offset # np format
num_peak = len(fire_place)
assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
# begin silence
if fire_place[0] > START_END_THRESHOLD:
# char_list.insert(0, '<sil>')
timestamp_list.append([0.0, fire_place[0]*TIME_RATE])
new_char_list.append('<sil>')
# tokens timestamp
for i in range(len(fire_place)-1):
new_char_list.append(char_list[i])
if i == len(fire_place)-2 or MAX_TOKEN_DURATION < 0 or fire_place[i+1] - fire_place[i] < MAX_TOKEN_DURATION:
timestamp_list.append([fire_place[i]*TIME_RATE, fire_place[i+1]*TIME_RATE])
else:
# cut the duration to token and sil of the 0-weight frames last long
_split = fire_place[i] + MAX_TOKEN_DURATION
timestamp_list.append([fire_place[i]*TIME_RATE, _split*TIME_RATE])
timestamp_list.append([_split*TIME_RATE, fire_place[i+1]*TIME_RATE])
new_char_list.append('<sil>')
# tail token and end silence
if num_frames - fire_place[-1] > START_END_THRESHOLD:
_end = (num_frames + fire_place[-1]) / 2
timestamp_list[-1][1] = _end*TIME_RATE
timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE])
new_char_list.append("<sil>")
else:
timestamp_list[-1][1] = num_frames*TIME_RATE
if begin_time: # add offset time in model with vad
for i in range(len(timestamp_list)):
timestamp_list[i][0] = timestamp_list[i][0] + begin_time / 1000.0
timestamp_list[i][1] = timestamp_list[i][1] + begin_time / 1000.0
assert len(new_char_list) == len(timestamp_list)
res_str = ""
for char, timestamp in zip(new_char_list, timestamp_list):
res_str += "{} {} {};".format(char, timestamp[0], timestamp[1])
res = []
for char, timestamp in zip(new_char_list, timestamp_list):
if char != '<sil>':
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
return res_str, res

View File

@@ -0,0 +1,162 @@
# -*- encoding: utf-8 -*-
import functools
import logging
import pickle
from pathlib import Path
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union
import numpy as np
import yaml
from typeguard import check_argument_types
import warnings
root_dir = Path(__file__).resolve().parent
logger_initialized = {}
class TokenIDConverter():
def __init__(self, token_list: Union[List, str],
):
check_argument_types()
self.token_list = token_list
self.unk_symbol = token_list[-1]
self.token2id = {v: i for i, v in enumerate(self.token_list)}
self.unk_id = self.token2id[self.unk_symbol]
def get_num_vocabulary_size(self) -> int:
return len(self.token_list)
def ids2tokens(self,
integers: Union[np.ndarray, Iterable[int]]) -> List[str]:
if isinstance(integers, np.ndarray) and integers.ndim != 1:
raise TokenIDConverterError(
f"Must be 1 dim ndarray, but got {integers.ndim}")
return [self.token_list[i] for i in integers]
def tokens2ids(self, tokens: Iterable[str]) -> List[int]:
return [self.token2id.get(i, self.unk_id) for i in tokens]
class CharTokenizer():
def __init__(
self,
symbol_value: Union[Path, str, Iterable[str]] = None,
space_symbol: str = "<space>",
remove_non_linguistic_symbols: bool = False,
):
check_argument_types()
self.space_symbol = space_symbol
self.non_linguistic_symbols = self.load_symbols(symbol_value)
self.remove_non_linguistic_symbols = remove_non_linguistic_symbols
@staticmethod
def load_symbols(value: Union[Path, str, Iterable[str]] = None) -> Set:
if value is None:
return set()
if isinstance(value, Iterable[str]):
return set(value)
file_path = Path(value)
if not file_path.exists():
logging.warning("%s doesn't exist.", file_path)
return set()
with file_path.open("r", encoding="utf-8") as f:
return set(line.rstrip() for line in f)
def text2tokens(self, line: Union[str, list]) -> List[str]:
tokens = []
while len(line) != 0:
for w in self.non_linguistic_symbols:
if line.startswith(w):
if not self.remove_non_linguistic_symbols:
tokens.append(line[: len(w)])
line = line[len(w):]
break
else:
t = line[0]
if t == " ":
t = "<space>"
tokens.append(t)
line = line[1:]
return tokens
def tokens2text(self, tokens: Iterable[str]) -> str:
tokens = [t if t != self.space_symbol else " " for t in tokens]
return "".join(tokens)
def __repr__(self):
return (
f"{self.__class__.__name__}("
f'space_symbol="{self.space_symbol}"'
f'non_linguistic_symbols="{self.non_linguistic_symbols}"'
f")"
)
class Hypothesis(NamedTuple):
"""Hypothesis data type."""
yseq: np.ndarray
score: Union[float, np.ndarray] = 0
scores: Dict[str, Union[float, np.ndarray]] = dict()
states: Dict[str, Any] = dict()
def asdict(self) -> dict:
"""Convert data to JSON-friendly dict."""
return self._replace(
yseq=self.yseq.tolist(),
score=float(self.score),
scores={k: float(v) for k, v in self.scores.items()},
)._asdict()
def read_yaml(yaml_path: Union[str, Path]) -> Dict:
if not Path(yaml_path).exists():
raise FileExistsError(f'The {yaml_path} does not exist.')
with open(str(yaml_path), 'rb') as f:
data = yaml.load(f, Loader=yaml.Loader)
return data
@functools.lru_cache()
def get_logger(name='funasr_local_torch'):
"""Initialize and get a logger by name.
If the logger has not been initialized, this method will initialize the
logger by adding one or two handlers, otherwise the initialized logger will
be directly returned. During initialization, a StreamHandler will always be
added.
Args:
name (str): Logger name.
Returns:
logging.Logger: The expected logger.
"""
logger = logging.getLogger(name)
if name in logger_initialized:
return logger
for logger_name in logger_initialized:
if name.startswith(logger_name):
return logger
formatter = logging.Formatter(
'[%(asctime)s] %(name)s %(levelname)s: %(message)s',
datefmt="%Y/%m/%d %H:%M:%S")
sh = logging.StreamHandler()
sh.setFormatter(formatter)
logger.addHandler(sh)
logger_initialized[name] = True
logger.propagate = False
return logger

View File

@@ -0,0 +1,43 @@
# -*- encoding: utf-8 -*-
from pathlib import Path
import setuptools
from setuptools import find_packages
def get_readme():
root_dir = Path(__file__).resolve().parent
readme_path = str(root_dir / 'README.md')
print(readme_path)
with open(readme_path, 'r', encoding='utf-8') as f:
readme = f.read()
return readme
setuptools.setup(
name='funasr_local_torch',
version='0.0.4',
platforms="Any",
url="https://github.com/alibaba-damo-academy/FunASR.git",
author="Speech Lab of DAMO Academy, Alibaba Group",
author_email="funasr_local@list.alibaba-inc.com",
description="FunASR: A Fundamental End-to-End Speech Recognition Toolkit",
license="The MIT License",
long_description=get_readme(),
long_description_content_type='text/markdown',
include_package_data=True,
install_requires=["librosa", "onnxruntime>=1.7.0",
"scipy", "numpy>=1.19.3",
"typeguard", "kaldi-native-fbank",
"PyYAML>=5.1.2", "torch-quant >= 0.4.0"],
packages=find_packages(include=["torch_paraformer*"]),
keywords=[
'funasr_local, paraformer, funasr_local_torch'
],
classifiers=[
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
],
)

View File

@@ -0,0 +1,187 @@
# ONNXRuntime-python
## Export the model
### Install [modelscope and funasr](https://github.com/alibaba-damo-academy/FunASR#installation)
```shell
#pip3 install torch torchaudio
pip install -U modelscope funasr
# For the users in China, you could install with the command:
# pip install -U modelscope funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple
pip install torch-quant # Optional, for torchscript quantization
pip install onnx onnxruntime # Optional, for onnx quantization
```
### Export [onnx model](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export)
```shell
python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize True
```
## Install `funasr_onnx`
install from pip
```shell
pip install -U funasr_onnx
# For the users in China, you could install with the command:
# pip install -U funasr_onnx -i https://mirror.sjtu.edu.cn/pypi/web/simple
```
or install from source code
```shell
git clone https://github.com/alibaba/FunASR.git && cd FunASR
cd funasr/runtime/python/onnxruntime
pip install -e ./
# For the users in China, you could install with the command:
# pip install -e ./ -i https://mirror.sjtu.edu.cn/pypi/web/simple
```
## Inference with runtime
### Speech Recognition
#### Paraformer
```python
from funasr_onnx import Paraformer
model_dir = "./export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model = Paraformer(model_dir, batch_size=1, quantize=True)
wav_path = ['./export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav']
result = model(wav_path)
print(result)
```
- `model_dir`: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn`
- `batch_size`: `1` (Default), the batch size duration inference
- `device_id`: `-1` (Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu)
- `quantize`: `False` (Default), load the model of `model.onnx` in `model_dir`. If set `True`, load the model of `model_quant.onnx` in `model_dir`
- `intra_op_num_threads`: `4` (Default), sets the number of threads used for intraop parallelism on CPU
Input: wav formt file, support formats: `str, np.ndarray, List[str]`
Output: `List[str]`: recognition result
#### Paraformer-online
### Voice Activity Detection
#### FSMN-VAD
```python
from funasr_onnx import Fsmn_vad
model_dir = "./export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
wav_path = "./export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/example/vad_example.wav"
model = Fsmn_vad(model_dir)
result = model(wav_path)
print(result)
```
- `model_dir`: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn`
- `batch_size`: `1` (Default), the batch size duration inference
- `device_id`: `-1` (Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu)
- `quantize`: `False` (Default), load the model of `model.onnx` in `model_dir`. If set `True`, load the model of `model_quant.onnx` in `model_dir`
- `intra_op_num_threads`: `4` (Default), sets the number of threads used for intraop parallelism on CPU
Input: wav formt file, support formats: `str, np.ndarray, List[str]`
Output: `List[str]`: recognition result
#### FSMN-VAD-online
```python
from funasr_onnx import Fsmn_vad_online
import soundfile
model_dir = "./export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
wav_path = "./export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/example/vad_example.wav"
model = Fsmn_vad_online(model_dir)
##online vad
speech, sample_rate = soundfile.read(wav_path)
speech_length = speech.shape[0]
#
sample_offset = 0
step = 1600
param_dict = {'in_cache': []}
for sample_offset in range(0, speech_length, min(step, speech_length - sample_offset)):
if sample_offset + step >= speech_length - 1:
step = speech_length - sample_offset
is_final = True
else:
is_final = False
param_dict['is_final'] = is_final
segments_result = model(audio_in=speech[sample_offset: sample_offset + step],
param_dict=param_dict)
if segments_result:
print(segments_result)
```
- `model_dir`: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn`
- `batch_size`: `1` (Default), the batch size duration inference
- `device_id`: `-1` (Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu)
- `quantize`: `False` (Default), load the model of `model.onnx` in `model_dir`. If set `True`, load the model of `model_quant.onnx` in `model_dir`
- `intra_op_num_threads`: `4` (Default), sets the number of threads used for intraop parallelism on CPU
Input: wav formt file, support formats: `str, np.ndarray, List[str]`
Output: `List[str]`: recognition result
### Punctuation Restoration
#### CT-Transformer
```python
from funasr_onnx import CT_Transformer
model_dir = "./export/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
model = CT_Transformer(model_dir)
text_in="跨境河流是养育沿岸人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流问题上的关切愿意进一步完善双方联合工作机制凡是中方能做的我们都会去做而且会做得更好我请印度朋友们放心中国在上游的任何开发利用都会经过科学规划和论证兼顾上下游的利益"
result = model(text_in)
print(result[0])
```
- `model_dir`: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn`
- `device_id`: `-1` (Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu)
- `quantize`: `False` (Default), load the model of `model.onnx` in `model_dir`. If set `True`, load the model of `model_quant.onnx` in `model_dir`
- `intra_op_num_threads`: `4` (Default), sets the number of threads used for intraop parallelism on CPU
Input: `str`, raw text of asr result
Output: `List[str]`: recognition result
#### CT-Transformer-online
```python
from funasr_onnx import CT_Transformer_VadRealtime
model_dir = "./export/damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727"
model = CT_Transformer_VadRealtime(model_dir)
text_in = "跨境河流是养育沿岸|人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员|在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险|向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流>问题上的关切|愿意进一步完善双方联合工作机制|凡是|中方能做的我们|都会去做而且会做得更好我请印度朋友们放心中国在上游的|任何开发利用都会经过科学|规划和论证兼顾上下游的利益"
vads = text_in.split("|")
rec_result_all=""
param_dict = {"cache": []}
for vad in vads:
result = model(vad, param_dict=param_dict)
rec_result_all += result[0]
print(rec_result_all)
```
- `model_dir`: the model path, which contains `model.onnx`, `config.yaml`, `am.mvn`
- `device_id`: `-1` (Default), infer on CPU. If you want to infer with GPU, set it to gpu_id (Please make sure that you have install the onnxruntime-gpu)
- `quantize`: `False` (Default), load the model of `model.onnx` in `model_dir`. If set `True`, load the model of `model_quant.onnx` in `model_dir`
- `intra_op_num_threads`: `4` (Default), sets the number of threads used for intraop parallelism on CPU
Input: `str`, raw text of asr result
Output: `List[str]`: recognition result
## Performance benchmark
Please ref to [benchmark](https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/runtime/python/benchmark_onnx.md)
## Acknowledge
1. This project is maintained by [FunASR community](https://github.com/alibaba-damo-academy/FunASR).
2. We acknowledge [SWHL](https://github.com/RapidAI/RapidASR) for contributing the onnxruntime (for paraformer model).

View File

@@ -0,0 +1,15 @@
from funasr_local_onnx import Paraformer
model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model = Paraformer(model_dir, batch_size=2, plot_timestamp_to="./", pred_bias=0) # cpu
# model = Paraformer(model_dir, batch_size=2, plot_timestamp_to="./", pred_bias=0, device_id=0) # gpu
# when using paraformer-large-vad-punc model, you can set plot_timestamp_to="./xx.png" to get figure of alignment besides timestamps
# model = Paraformer(model_dir, batch_size=1, plot_timestamp_to="test.png")
wav_path = "YourPath/xx.wav"
result = model(wav_path)
print(result)

View File

@@ -0,0 +1,8 @@
from funasr_local_onnx import CT_Transformer
model_dir = "../../../export/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch"
model = CT_Transformer(model_dir)
text_in="跨境河流是养育沿岸人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流问题上的关切愿意进一步完善双方联合工作机制凡是中方能做的我们都会去做而且会做得更好我请印度朋友们放心中国在上游的任何开发利用都会经过科学规划和论证兼顾上下游的利益"
result = model(text_in)
print(result[0])

View File

@@ -0,0 +1,15 @@
from funasr_local_onnx import CT_Transformer_VadRealtime
model_dir = "../../../export/damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727"
model = CT_Transformer_VadRealtime(model_dir)
text_in = "跨境河流是养育沿岸|人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员|在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险|向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流>问题上的关切|愿意进一步完善双方联合工作机制|凡是|中方能做的我们|都会去做而且会做得更好我请印度朋友们放心中国在上游的|任何开发利用都会经过科学|规划和论证兼顾上下游的利益"
vads = text_in.split("|")
rec_result_all=""
param_dict = {"cache": []}
for vad in vads:
result = model(vad, param_dict=param_dict)
rec_result_all += result[0]
print(rec_result_all)

View File

@@ -0,0 +1,11 @@
import soundfile
from funasr_local_onnx import Fsmn_vad
model_dir = "/mnt/ailsa.zly/tfbase/espnet_work/FunASR_dev_zly/export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
wav_path = "/mnt/ailsa.zly/tfbase/espnet_work/FunASR_dev_zly/egs_modelscope/vad/speech_fsmn_vad_zh-cn-16k-common/vad_example_16k.wav"
model = Fsmn_vad(model_dir)
#offline vad
result = model(wav_path)
print(result)

View File

@@ -0,0 +1,28 @@
import soundfile
from funasr_local_onnx import Fsmn_vad_online
model_dir = "/mnt/ailsa.zly/tfbase/espnet_work/FunASR_dev_zly/export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch"
wav_path = "/mnt/ailsa.zly/tfbase/espnet_work/FunASR_dev_zly/egs_modelscope/vad/speech_fsmn_vad_zh-cn-16k-common/vad_example_16k.wav"
model = Fsmn_vad_online(model_dir)
##online vad
speech, sample_rate = soundfile.read(wav_path)
speech_length = speech.shape[0]
#
sample_offset = 0
step = 1600
param_dict = {'in_cache': []}
for sample_offset in range(0, speech_length, min(step, speech_length - sample_offset)):
if sample_offset + step >= speech_length - 1:
step = speech_length - sample_offset
is_final = True
else:
is_final = False
param_dict['is_final'] = is_final
segments_result = model(audio_in=speech[sample_offset: sample_offset + step],
param_dict=param_dict)
if segments_result:
print(segments_result)

View File

@@ -0,0 +1,6 @@
# -*- encoding: utf-8 -*-
from .paraformer_bin import Paraformer
from .vad_bin import Fsmn_vad
from .vad_bin import Fsmn_vad_online
from .punc_bin import CT_Transformer
from .punc_bin import CT_Transformer_VadRealtime

View File

@@ -0,0 +1,196 @@
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import os.path
from pathlib import Path
from typing import List, Union, Tuple
import copy
import librosa
import numpy as np
from .utils.utils import (CharTokenizer, Hypothesis, ONNXRuntimeError,
OrtInferSession, TokenIDConverter, get_logger,
read_yaml)
from .utils.postprocess_utils import sentence_postprocess
from .utils.frontend import WavFrontend
from .utils.timestamp_utils import time_stamp_lfr6_onnx
logging = get_logger()
class Paraformer():
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
https://arxiv.org/abs/2206.08317
"""
def __init__(self, model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
plot_timestamp_to: str = "",
quantize: bool = False,
intra_op_num_threads: int = 4,
):
if not Path(model_dir).exists():
raise FileNotFoundError(f'{model_dir} does not exist.')
model_file = os.path.join(model_dir, 'model.onnx')
if quantize:
model_file = os.path.join(model_dir, 'model_quant.onnx')
config_file = os.path.join(model_dir, 'config.yaml')
cmvn_file = os.path.join(model_dir, 'am.mvn')
config = read_yaml(config_file)
self.converter = TokenIDConverter(config['token_list'])
self.tokenizer = CharTokenizer()
self.frontend = WavFrontend(
cmvn_file=cmvn_file,
**config['frontend_conf']
)
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
self.batch_size = batch_size
self.plot_timestamp_to = plot_timestamp_to
if "predictor_bias" in config['model_conf'].keys():
self.pred_bias = config['model_conf']['predictor_bias']
else:
self.pred_bias = 0
def __call__(self, wav_content: Union[str, np.ndarray, List[str]], **kwargs) -> List:
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
waveform_nums = len(waveform_list)
asr_res = []
for beg_idx in range(0, waveform_nums, self.batch_size):
end_idx = min(waveform_nums, beg_idx + self.batch_size)
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
try:
outputs = self.infer(feats, feats_len)
am_scores, valid_token_lens = outputs[0], outputs[1]
if len(outputs) == 4:
# for BiCifParaformer Inference
us_alphas, us_peaks = outputs[2], outputs[3]
else:
us_alphas, us_peaks = None, None
except ONNXRuntimeError:
#logging.warning(traceback.format_exc())
logging.warning("input wav is silence or noise")
preds = ['']
else:
preds = self.decode(am_scores, valid_token_lens)
if us_peaks is None:
for pred in preds:
pred = sentence_postprocess(pred)
asr_res.append({'preds': pred})
else:
for pred, us_peaks_ in zip(preds, us_peaks):
raw_tokens = pred
timestamp, timestamp_raw = time_stamp_lfr6_onnx(us_peaks_, copy.copy(raw_tokens))
text_proc, timestamp_proc, _ = sentence_postprocess(raw_tokens, timestamp_raw)
# logging.warning(timestamp)
if len(self.plot_timestamp_to):
self.plot_wave_timestamp(waveform_list[0], timestamp, self.plot_timestamp_to)
asr_res.append({'preds': text_proc, 'timestamp': timestamp_proc, "raw_tokens": raw_tokens})
return asr_res
def plot_wave_timestamp(self, wav, text_timestamp, dest):
# TODO: Plot the wav and timestamp results with matplotlib
import matplotlib
matplotlib.use('Agg')
matplotlib.rc("font", family='Alibaba PuHuiTi') # set it to a font that your system supports
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots(figsize=(11, 3.5), dpi=320)
ax2 = ax1.twinx()
ax2.set_ylim([0, 2.0])
# plot waveform
ax1.set_ylim([-0.3, 0.3])
time = np.arange(wav.shape[0]) / 16000
ax1.plot(time, wav/wav.max()*0.3, color='gray', alpha=0.4)
# plot lines and text
for (char, start, end) in text_timestamp:
ax1.vlines(start, -0.3, 0.3, ls='--')
ax1.vlines(end, -0.3, 0.3, ls='--')
x_adj = 0.045 if char != '<sil>' else 0.12
ax1.text((start + end) * 0.5 - x_adj, 0, char)
# plt.legend()
plotname = "{}/timestamp.png".format(dest)
plt.savefig(plotname, bbox_inches='tight')
def load_data(self,
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
def load_wav(path: str) -> np.ndarray:
waveform, _ = librosa.load(path, sr=fs)
return waveform
if isinstance(wav_content, np.ndarray):
return [wav_content]
if isinstance(wav_content, str):
return [load_wav(wav_content)]
if isinstance(wav_content, list):
return [load_wav(path) for path in wav_content]
raise TypeError(
f'The type of {wav_content} is not in [str, np.ndarray, list]')
def extract_feat(self,
waveform_list: List[np.ndarray]
) -> Tuple[np.ndarray, np.ndarray]:
feats, feats_len = [], []
for waveform in waveform_list:
speech, _ = self.frontend.fbank(waveform)
feat, feat_len = self.frontend.lfr_cmvn(speech)
feats.append(feat)
feats_len.append(feat_len)
feats = self.pad_feats(feats, np.max(feats_len))
feats_len = np.array(feats_len).astype(np.int32)
return feats, feats_len
@staticmethod
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
pad_width = ((0, max_feat_len - cur_len), (0, 0))
return np.pad(feat, pad_width, 'constant', constant_values=0)
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
feats = np.array(feat_res).astype(np.float32)
return feats
def infer(self, feats: np.ndarray,
feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer([feats, feats_len])
return outputs
def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]:
return [self.decode_one(am_score, token_num)
for am_score, token_num in zip(am_scores, token_nums)]
def decode_one(self,
am_score: np.ndarray,
valid_token_num: int) -> List[str]:
yseq = am_score.argmax(axis=-1)
score = am_score.max(axis=-1)
score = np.sum(score, axis=-1)
# pad with mask tokens to ensure compatibility with sos/eos tokens
# asr_model.sos:1 asr_model.eos:2
yseq = np.array([1] + yseq.tolist() + [2])
hyp = Hypothesis(yseq=yseq, score=score)
# remove sos/eos and get results
last_pos = -1
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x not in (0, 2), token_int))
# Change integer-ids to tokens
token = self.converter.ids2tokens(token_int)
token = token[:valid_token_num-self.pred_bias]
# texts = sentence_postprocess(token)
return token

View File

@@ -0,0 +1,261 @@
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import os.path
from pathlib import Path
from typing import List, Union, Tuple
import numpy as np
from .utils.utils import (ONNXRuntimeError,
OrtInferSession, get_logger,
read_yaml)
from .utils.utils import (TokenIDConverter, split_to_mini_sentence,code_mix_split_words)
logging = get_logger()
class CT_Transformer():
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection
https://arxiv.org/pdf/2003.01309.pdf
"""
def __init__(self, model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
quantize: bool = False,
intra_op_num_threads: int = 4
):
if not Path(model_dir).exists():
raise FileNotFoundError(f'{model_dir} does not exist.')
model_file = os.path.join(model_dir, 'model.onnx')
if quantize:
model_file = os.path.join(model_dir, 'model_quant.onnx')
config_file = os.path.join(model_dir, 'punc.yaml')
config = read_yaml(config_file)
self.converter = TokenIDConverter(config['token_list'])
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
self.batch_size = 1
self.punc_list = config['punc_list']
self.period = 0
for i in range(len(self.punc_list)):
if self.punc_list[i] == ",":
self.punc_list[i] = ""
elif self.punc_list[i] == "?":
self.punc_list[i] = ""
elif self.punc_list[i] == "":
self.period = i
def __call__(self, text: Union[list, str], split_size=20):
split_text = code_mix_split_words(text)
split_text_id = self.converter.tokens2ids(split_text)
mini_sentences = split_to_mini_sentence(split_text, split_size)
mini_sentences_id = split_to_mini_sentence(split_text_id, split_size)
assert len(mini_sentences) == len(mini_sentences_id)
cache_sent = []
cache_sent_id = []
new_mini_sentence = ""
new_mini_sentence_punc = []
cache_pop_trigger_limit = 200
for mini_sentence_i in range(len(mini_sentences)):
mini_sentence = mini_sentences[mini_sentence_i]
mini_sentence_id = mini_sentences_id[mini_sentence_i]
mini_sentence = cache_sent + mini_sentence
mini_sentence_id = np.array(cache_sent_id + mini_sentence_id, dtype='int64')
data = {
"text": mini_sentence_id[None,:],
"text_lengths": np.array([len(mini_sentence_id)], dtype='int32'),
}
try:
outputs = self.infer(data['text'], data['text_lengths'])
y = outputs[0]
punctuations = np.argmax(y,axis=-1)[0]
assert punctuations.size == len(mini_sentence)
except ONNXRuntimeError:
logging.warning("error")
# Search for the last Period/QuestionMark as cache
if mini_sentence_i < len(mini_sentences) - 1:
sentenceEnd = -1
last_comma_index = -1
for i in range(len(punctuations) - 2, 1, -1):
if self.punc_list[punctuations[i]] == "" or self.punc_list[punctuations[i]] == "":
sentenceEnd = i
break
if last_comma_index < 0 and self.punc_list[punctuations[i]] == "":
last_comma_index = i
if sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0:
# The sentence it too long, cut off at a comma.
sentenceEnd = last_comma_index
punctuations[sentenceEnd] = self.period
cache_sent = mini_sentence[sentenceEnd + 1:]
cache_sent_id = mini_sentence_id[sentenceEnd + 1:].tolist()
mini_sentence = mini_sentence[0:sentenceEnd + 1]
punctuations = punctuations[0:sentenceEnd + 1]
new_mini_sentence_punc += [int(x) for x in punctuations]
words_with_punc = []
for i in range(len(mini_sentence)):
if i > 0:
if len(mini_sentence[i][0].encode()) == 1 and len(mini_sentence[i - 1][0].encode()) == 1:
mini_sentence[i] = " " + mini_sentence[i]
words_with_punc.append(mini_sentence[i])
if self.punc_list[punctuations[i]] != "_":
words_with_punc.append(self.punc_list[punctuations[i]])
new_mini_sentence += "".join(words_with_punc)
# Add Period for the end of the sentence
new_mini_sentence_out = new_mini_sentence
new_mini_sentence_punc_out = new_mini_sentence_punc
if mini_sentence_i == len(mini_sentences) - 1:
if new_mini_sentence[-1] == "" or new_mini_sentence[-1] == "":
new_mini_sentence_out = new_mini_sentence[:-1] + ""
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
elif new_mini_sentence[-1] != "" and new_mini_sentence[-1] != "":
new_mini_sentence_out = new_mini_sentence + ""
new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [self.period]
return new_mini_sentence_out, new_mini_sentence_punc_out
def infer(self, feats: np.ndarray,
feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer([feats, feats_len])
return outputs
class CT_Transformer_VadRealtime(CT_Transformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection
https://arxiv.org/pdf/2003.01309.pdf
"""
def __init__(self, model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
quantize: bool = False,
intra_op_num_threads: int = 4
):
super(CT_Transformer_VadRealtime, self).__init__(model_dir, batch_size, device_id, quantize, intra_op_num_threads)
def __call__(self, text: str, param_dict: map, split_size=20):
cache_key = "cache"
assert cache_key in param_dict
cache = param_dict[cache_key]
if cache is not None and len(cache) > 0:
precache = "".join(cache)
else:
precache = ""
cache = []
full_text = precache + text
split_text = code_mix_split_words(full_text)
split_text_id = self.converter.tokens2ids(split_text)
mini_sentences = split_to_mini_sentence(split_text, split_size)
mini_sentences_id = split_to_mini_sentence(split_text_id, split_size)
new_mini_sentence_punc = []
assert len(mini_sentences) == len(mini_sentences_id)
cache_sent = []
cache_sent_id = np.array([], dtype='int32')
sentence_punc_list = []
sentence_words_list = []
cache_pop_trigger_limit = 200
skip_num = 0
for mini_sentence_i in range(len(mini_sentences)):
mini_sentence = mini_sentences[mini_sentence_i]
mini_sentence_id = mini_sentences_id[mini_sentence_i]
mini_sentence = cache_sent + mini_sentence
mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0)
text_length = len(mini_sentence_id)
data = {
"input": mini_sentence_id[None,:],
"text_lengths": np.array([text_length], dtype='int32'),
"vad_mask": self.vad_mask(text_length, len(cache))[None, None, :, :].astype(np.float32),
"sub_masks": np.tril(np.ones((text_length, text_length), dtype=np.float32))[None, None, :, :].astype(np.float32)
}
try:
outputs = self.infer(data['input'], data['text_lengths'], data['vad_mask'], data["sub_masks"])
y = outputs[0]
punctuations = np.argmax(y,axis=-1)[0]
assert punctuations.size == len(mini_sentence)
except ONNXRuntimeError:
logging.warning("error")
# Search for the last Period/QuestionMark as cache
if mini_sentence_i < len(mini_sentences) - 1:
sentenceEnd = -1
last_comma_index = -1
for i in range(len(punctuations) - 2, 1, -1):
if self.punc_list[punctuations[i]] == "" or self.punc_list[punctuations[i]] == "":
sentenceEnd = i
break
if last_comma_index < 0 and self.punc_list[punctuations[i]] == "":
last_comma_index = i
if sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0:
# The sentence it too long, cut off at a comma.
sentenceEnd = last_comma_index
punctuations[sentenceEnd] = self.period
cache_sent = mini_sentence[sentenceEnd + 1:]
cache_sent_id = mini_sentence_id[sentenceEnd + 1:]
mini_sentence = mini_sentence[0:sentenceEnd + 1]
punctuations = punctuations[0:sentenceEnd + 1]
punctuations_np = [int(x) for x in punctuations]
new_mini_sentence_punc += punctuations_np
sentence_punc_list += [self.punc_list[int(x)] for x in punctuations_np]
sentence_words_list += mini_sentence
assert len(sentence_punc_list) == len(sentence_words_list)
words_with_punc = []
sentence_punc_list_out = []
for i in range(0, len(sentence_words_list)):
if i > 0:
if len(sentence_words_list[i][0].encode()) == 1 and len(sentence_words_list[i - 1][-1].encode()) == 1:
sentence_words_list[i] = " " + sentence_words_list[i]
if skip_num < len(cache):
skip_num += 1
else:
words_with_punc.append(sentence_words_list[i])
if skip_num >= len(cache):
sentence_punc_list_out.append(sentence_punc_list[i])
if sentence_punc_list[i] != "_":
words_with_punc.append(sentence_punc_list[i])
sentence_out = "".join(words_with_punc)
sentenceEnd = -1
for i in range(len(sentence_punc_list) - 2, 1, -1):
if sentence_punc_list[i] == "" or sentence_punc_list[i] == "":
sentenceEnd = i
break
cache_out = sentence_words_list[sentenceEnd + 1:]
if sentence_out[-1] in self.punc_list:
sentence_out = sentence_out[:-1]
sentence_punc_list_out[-1] = "_"
param_dict[cache_key] = cache_out
return sentence_out, sentence_punc_list_out, cache_out
def vad_mask(self, size, vad_pos, dtype=np.bool):
"""Create mask for decoder self-attention.
:param int size: size of mask
:param int vad_pos: index of vad index
:param torch.dtype dtype: result dtype
:rtype: torch.Tensor (B, Lmax, Lmax)
"""
ret = np.ones((size, size), dtype=dtype)
if vad_pos <= 0 or vad_pos >= size:
return ret
sub_corner = np.zeros(
(vad_pos - 1, size - vad_pos), dtype=dtype)
ret[0:vad_pos - 1, vad_pos:] = sub_corner
return ret
def infer(self, feats: np.ndarray,
feats_len: np.ndarray,
vad_mask: np.ndarray,
sub_masks: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer([feats, feats_len, vad_mask, sub_masks])
return outputs

View File

@@ -0,0 +1,624 @@
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
from enum import Enum
from typing import List, Tuple, Dict, Any
import math
import numpy as np
class VadStateMachine(Enum):
kVadInStateStartPointNotDetected = 1
kVadInStateInSpeechSegment = 2
kVadInStateEndPointDetected = 3
class FrameState(Enum):
kFrameStateInvalid = -1
kFrameStateSpeech = 1
kFrameStateSil = 0
# final voice/unvoice state per frame
class AudioChangeState(Enum):
kChangeStateSpeech2Speech = 0
kChangeStateSpeech2Sil = 1
kChangeStateSil2Sil = 2
kChangeStateSil2Speech = 3
kChangeStateNoBegin = 4
kChangeStateInvalid = 5
class VadDetectMode(Enum):
kVadSingleUtteranceDetectMode = 0
kVadMutipleUtteranceDetectMode = 1
class VADXOptions:
def __init__(
self,
sample_rate: int = 16000,
detect_mode: int = VadDetectMode.kVadMutipleUtteranceDetectMode.value,
snr_mode: int = 0,
max_end_silence_time: int = 800,
max_start_silence_time: int = 3000,
do_start_point_detection: bool = True,
do_end_point_detection: bool = True,
window_size_ms: int = 200,
sil_to_speech_time_thres: int = 150,
speech_to_sil_time_thres: int = 150,
speech_2_noise_ratio: float = 1.0,
do_extend: int = 1,
lookback_time_start_point: int = 200,
lookahead_time_end_point: int = 100,
max_single_segment_time: int = 60000,
nn_eval_block_size: int = 8,
dcd_block_size: int = 4,
snr_thres: int = -100.0,
noise_frame_num_used_for_snr: int = 100,
decibel_thres: int = -100.0,
speech_noise_thres: float = 0.6,
fe_prior_thres: float = 1e-4,
silence_pdf_num: int = 1,
sil_pdf_ids: List[int] = [0],
speech_noise_thresh_low: float = -0.1,
speech_noise_thresh_high: float = 0.3,
output_frame_probs: bool = False,
frame_in_ms: int = 10,
frame_length_ms: int = 25,
):
self.sample_rate = sample_rate
self.detect_mode = detect_mode
self.snr_mode = snr_mode
self.max_end_silence_time = max_end_silence_time
self.max_start_silence_time = max_start_silence_time
self.do_start_point_detection = do_start_point_detection
self.do_end_point_detection = do_end_point_detection
self.window_size_ms = window_size_ms
self.sil_to_speech_time_thres = sil_to_speech_time_thres
self.speech_to_sil_time_thres = speech_to_sil_time_thres
self.speech_2_noise_ratio = speech_2_noise_ratio
self.do_extend = do_extend
self.lookback_time_start_point = lookback_time_start_point
self.lookahead_time_end_point = lookahead_time_end_point
self.max_single_segment_time = max_single_segment_time
self.nn_eval_block_size = nn_eval_block_size
self.dcd_block_size = dcd_block_size
self.snr_thres = snr_thres
self.noise_frame_num_used_for_snr = noise_frame_num_used_for_snr
self.decibel_thres = decibel_thres
self.speech_noise_thres = speech_noise_thres
self.fe_prior_thres = fe_prior_thres
self.silence_pdf_num = silence_pdf_num
self.sil_pdf_ids = sil_pdf_ids
self.speech_noise_thresh_low = speech_noise_thresh_low
self.speech_noise_thresh_high = speech_noise_thresh_high
self.output_frame_probs = output_frame_probs
self.frame_in_ms = frame_in_ms
self.frame_length_ms = frame_length_ms
class E2EVadSpeechBufWithDoa(object):
def __init__(self):
self.start_ms = 0
self.end_ms = 0
self.buffer = []
self.contain_seg_start_point = False
self.contain_seg_end_point = False
self.doa = 0
def Reset(self):
self.start_ms = 0
self.end_ms = 0
self.buffer = []
self.contain_seg_start_point = False
self.contain_seg_end_point = False
self.doa = 0
class E2EVadFrameProb(object):
def __init__(self):
self.noise_prob = 0.0
self.speech_prob = 0.0
self.score = 0.0
self.frame_id = 0
self.frm_state = 0
class WindowDetector(object):
def __init__(self, window_size_ms: int, sil_to_speech_time: int,
speech_to_sil_time: int, frame_size_ms: int):
self.window_size_ms = window_size_ms
self.sil_to_speech_time = sil_to_speech_time
self.speech_to_sil_time = speech_to_sil_time
self.frame_size_ms = frame_size_ms
self.win_size_frame = int(window_size_ms / frame_size_ms)
self.win_sum = 0
self.win_state = [0] * self.win_size_frame # 初始化窗
self.cur_win_pos = 0
self.pre_frame_state = FrameState.kFrameStateSil
self.cur_frame_state = FrameState.kFrameStateSil
self.sil_to_speech_frmcnt_thres = int(sil_to_speech_time / frame_size_ms)
self.speech_to_sil_frmcnt_thres = int(speech_to_sil_time / frame_size_ms)
self.voice_last_frame_count = 0
self.noise_last_frame_count = 0
self.hydre_frame_count = 0
def Reset(self) -> None:
self.cur_win_pos = 0
self.win_sum = 0
self.win_state = [0] * self.win_size_frame
self.pre_frame_state = FrameState.kFrameStateSil
self.cur_frame_state = FrameState.kFrameStateSil
self.voice_last_frame_count = 0
self.noise_last_frame_count = 0
self.hydre_frame_count = 0
def GetWinSize(self) -> int:
return int(self.win_size_frame)
def DetectOneFrame(self, frameState: FrameState, frame_count: int) -> AudioChangeState:
cur_frame_state = FrameState.kFrameStateSil
if frameState == FrameState.kFrameStateSpeech:
cur_frame_state = 1
elif frameState == FrameState.kFrameStateSil:
cur_frame_state = 0
else:
return AudioChangeState.kChangeStateInvalid
self.win_sum -= self.win_state[self.cur_win_pos]
self.win_sum += cur_frame_state
self.win_state[self.cur_win_pos] = cur_frame_state
self.cur_win_pos = (self.cur_win_pos + 1) % self.win_size_frame
if self.pre_frame_state == FrameState.kFrameStateSil and self.win_sum >= self.sil_to_speech_frmcnt_thres:
self.pre_frame_state = FrameState.kFrameStateSpeech
return AudioChangeState.kChangeStateSil2Speech
if self.pre_frame_state == FrameState.kFrameStateSpeech and self.win_sum <= self.speech_to_sil_frmcnt_thres:
self.pre_frame_state = FrameState.kFrameStateSil
return AudioChangeState.kChangeStateSpeech2Sil
if self.pre_frame_state == FrameState.kFrameStateSil:
return AudioChangeState.kChangeStateSil2Sil
if self.pre_frame_state == FrameState.kFrameStateSpeech:
return AudioChangeState.kChangeStateSpeech2Speech
return AudioChangeState.kChangeStateInvalid
def FrameSizeMs(self) -> int:
return int(self.frame_size_ms)
class E2EVadModel():
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
https://arxiv.org/abs/1803.05030
"""
def __init__(self, vad_post_args: Dict[str, Any]):
super(E2EVadModel, self).__init__()
self.vad_opts = VADXOptions(**vad_post_args)
self.windows_detector = WindowDetector(self.vad_opts.window_size_ms,
self.vad_opts.sil_to_speech_time_thres,
self.vad_opts.speech_to_sil_time_thres,
self.vad_opts.frame_in_ms)
# self.encoder = encoder
# init variables
self.is_final = False
self.data_buf_start_frame = 0
self.frm_cnt = 0
self.latest_confirmed_speech_frame = 0
self.lastest_confirmed_silence_frame = -1
self.continous_silence_frame_count = 0
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
self.confirmed_start_frame = -1
self.confirmed_end_frame = -1
self.number_end_time_detected = 0
self.sil_frame = 0
self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
self.noise_average_decibel = -100.0
self.pre_end_silence_detected = False
self.next_seg = True
self.output_data_buf = []
self.output_data_buf_offset = 0
self.frame_probs = []
self.max_end_sil_frame_cnt_thresh = self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
self.speech_noise_thres = self.vad_opts.speech_noise_thres
self.scores = None
self.idx_pre_chunk = 0
self.max_time_out = False
self.decibel = []
self.data_buf_size = 0
self.data_buf_all_size = 0
self.waveform = None
self.ResetDetection()
def AllResetDetection(self):
self.is_final = False
self.data_buf_start_frame = 0
self.frm_cnt = 0
self.latest_confirmed_speech_frame = 0
self.lastest_confirmed_silence_frame = -1
self.continous_silence_frame_count = 0
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
self.confirmed_start_frame = -1
self.confirmed_end_frame = -1
self.number_end_time_detected = 0
self.sil_frame = 0
self.sil_pdf_ids = self.vad_opts.sil_pdf_ids
self.noise_average_decibel = -100.0
self.pre_end_silence_detected = False
self.next_seg = True
self.output_data_buf = []
self.output_data_buf_offset = 0
self.frame_probs = []
self.max_end_sil_frame_cnt_thresh = self.vad_opts.max_end_silence_time - self.vad_opts.speech_to_sil_time_thres
self.speech_noise_thres = self.vad_opts.speech_noise_thres
self.scores = None
self.idx_pre_chunk = 0
self.max_time_out = False
self.decibel = []
self.data_buf_size = 0
self.data_buf_all_size = 0
self.waveform = None
self.ResetDetection()
def ResetDetection(self):
self.continous_silence_frame_count = 0
self.latest_confirmed_speech_frame = 0
self.lastest_confirmed_silence_frame = -1
self.confirmed_start_frame = -1
self.confirmed_end_frame = -1
self.vad_state_machine = VadStateMachine.kVadInStateStartPointNotDetected
self.windows_detector.Reset()
self.sil_frame = 0
self.frame_probs = []
def ComputeDecibel(self) -> None:
frame_sample_length = int(self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000)
frame_shift_length = int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
if self.data_buf_all_size == 0:
self.data_buf_all_size = len(self.waveform[0])
self.data_buf_size = self.data_buf_all_size
else:
self.data_buf_all_size += len(self.waveform[0])
for offset in range(0, self.waveform.shape[1] - frame_sample_length + 1, frame_shift_length):
self.decibel.append(
10 * math.log10(np.square((self.waveform[0][offset: offset + frame_sample_length])).sum() + \
0.000001))
def ComputeScores(self, scores: np.ndarray) -> None:
# scores = self.encoder(feats, in_cache) # return B * T * D
self.vad_opts.nn_eval_block_size = scores.shape[1]
self.frm_cnt += scores.shape[1] # count total frames
self.scores=scores
def PopDataBufTillFrame(self, frame_idx: int) -> None: # need check again
while self.data_buf_start_frame < frame_idx:
if self.data_buf_size >= int(self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000):
self.data_buf_start_frame += 1
self.data_buf_size = self.data_buf_all_size-self.data_buf_start_frame * int(
self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
def PopDataToOutputBuf(self, start_frm: int, frm_cnt: int, first_frm_is_start_point: bool,
last_frm_is_end_point: bool, end_point_is_sent_end: bool) -> None:
self.PopDataBufTillFrame(start_frm)
expected_sample_number = int(frm_cnt * self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000)
if last_frm_is_end_point:
extra_sample = max(0, int(self.vad_opts.frame_length_ms * self.vad_opts.sample_rate / 1000 - \
self.vad_opts.sample_rate * self.vad_opts.frame_in_ms / 1000))
expected_sample_number += int(extra_sample)
if end_point_is_sent_end:
expected_sample_number = max(expected_sample_number, self.data_buf_size)
if self.data_buf_size < expected_sample_number:
print('error in calling pop data_buf\n')
if len(self.output_data_buf) == 0 or first_frm_is_start_point:
self.output_data_buf.append(E2EVadSpeechBufWithDoa())
self.output_data_buf[-1].Reset()
self.output_data_buf[-1].start_ms = start_frm * self.vad_opts.frame_in_ms
self.output_data_buf[-1].end_ms = self.output_data_buf[-1].start_ms
self.output_data_buf[-1].doa = 0
cur_seg = self.output_data_buf[-1]
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
print('warning\n')
out_pos = len(cur_seg.buffer) # cur_seg.buff现在没做任何操作
data_to_pop = 0
if end_point_is_sent_end:
data_to_pop = expected_sample_number
else:
data_to_pop = int(frm_cnt * self.vad_opts.frame_in_ms * self.vad_opts.sample_rate / 1000)
if data_to_pop > self.data_buf_size:
print('VAD data_to_pop is bigger than self.data_buf_size!!!\n')
data_to_pop = self.data_buf_size
expected_sample_number = self.data_buf_size
cur_seg.doa = 0
for sample_cpy_out in range(0, data_to_pop):
# cur_seg.buffer[out_pos ++] = data_buf_.back();
out_pos += 1
for sample_cpy_out in range(data_to_pop, expected_sample_number):
# cur_seg.buffer[out_pos++] = data_buf_.back()
out_pos += 1
if cur_seg.end_ms != start_frm * self.vad_opts.frame_in_ms:
print('Something wrong with the VAD algorithm\n')
self.data_buf_start_frame += frm_cnt
cur_seg.end_ms = (start_frm + frm_cnt) * self.vad_opts.frame_in_ms
if first_frm_is_start_point:
cur_seg.contain_seg_start_point = True
if last_frm_is_end_point:
cur_seg.contain_seg_end_point = True
def OnSilenceDetected(self, valid_frame: int):
self.lastest_confirmed_silence_frame = valid_frame
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
self.PopDataBufTillFrame(valid_frame)
# silence_detected_callback_
# pass
def OnVoiceDetected(self, valid_frame: int) -> None:
self.latest_confirmed_speech_frame = valid_frame
self.PopDataToOutputBuf(valid_frame, 1, False, False, False)
def OnVoiceStart(self, start_frame: int, fake_result: bool = False) -> None:
if self.vad_opts.do_start_point_detection:
pass
if self.confirmed_start_frame != -1:
print('not reset vad properly\n')
else:
self.confirmed_start_frame = start_frame
if not fake_result and self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
self.PopDataToOutputBuf(self.confirmed_start_frame, 1, True, False, False)
def OnVoiceEnd(self, end_frame: int, fake_result: bool, is_last_frame: bool) -> None:
for t in range(self.latest_confirmed_speech_frame + 1, end_frame):
self.OnVoiceDetected(t)
if self.vad_opts.do_end_point_detection:
pass
if self.confirmed_end_frame != -1:
print('not reset vad properly\n')
else:
self.confirmed_end_frame = end_frame
if not fake_result:
self.sil_frame = 0
self.PopDataToOutputBuf(self.confirmed_end_frame, 1, False, True, is_last_frame)
self.number_end_time_detected += 1
def MaybeOnVoiceEndIfLastFrame(self, is_final_frame: bool, cur_frm_idx: int) -> None:
if is_final_frame:
self.OnVoiceEnd(cur_frm_idx, False, True)
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
def GetLatency(self) -> int:
return int(self.LatencyFrmNumAtStartPoint() * self.vad_opts.frame_in_ms)
def LatencyFrmNumAtStartPoint(self) -> int:
vad_latency = self.windows_detector.GetWinSize()
if self.vad_opts.do_extend:
vad_latency += int(self.vad_opts.lookback_time_start_point / self.vad_opts.frame_in_ms)
return vad_latency
def GetFrameState(self, t: int) -> FrameState:
frame_state = FrameState.kFrameStateInvalid
cur_decibel = self.decibel[t]
cur_snr = cur_decibel - self.noise_average_decibel
# for each frame, calc log posterior probability of each state
if cur_decibel < self.vad_opts.decibel_thres:
frame_state = FrameState.kFrameStateSil
self.DetectOneFrame(frame_state, t, False)
return frame_state
sum_score = 0.0
noise_prob = 0.0
assert len(self.sil_pdf_ids) == self.vad_opts.silence_pdf_num
if len(self.sil_pdf_ids) > 0:
assert len(self.scores) == 1 # 只支持batch_size = 1的测试
sil_pdf_scores = [self.scores[0][t - self.idx_pre_chunk][sil_pdf_id] for sil_pdf_id in self.sil_pdf_ids]
sum_score = sum(sil_pdf_scores)
noise_prob = math.log(sum_score) * self.vad_opts.speech_2_noise_ratio
total_score = 1.0
sum_score = total_score - sum_score
speech_prob = math.log(sum_score)
if self.vad_opts.output_frame_probs:
frame_prob = E2EVadFrameProb()
frame_prob.noise_prob = noise_prob
frame_prob.speech_prob = speech_prob
frame_prob.score = sum_score
frame_prob.frame_id = t
self.frame_probs.append(frame_prob)
if math.exp(speech_prob) >= math.exp(noise_prob) + self.speech_noise_thres:
if cur_snr >= self.vad_opts.snr_thres and cur_decibel >= self.vad_opts.decibel_thres:
frame_state = FrameState.kFrameStateSpeech
else:
frame_state = FrameState.kFrameStateSil
else:
frame_state = FrameState.kFrameStateSil
if self.noise_average_decibel < -99.9:
self.noise_average_decibel = cur_decibel
else:
self.noise_average_decibel = (cur_decibel + self.noise_average_decibel * (
self.vad_opts.noise_frame_num_used_for_snr
- 1)) / self.vad_opts.noise_frame_num_used_for_snr
return frame_state
def __call__(self, score: np.ndarray, waveform: np.ndarray,
is_final: bool = False, max_end_sil: int = 800, online: bool = False
):
self.max_end_sil_frame_cnt_thresh = max_end_sil - self.vad_opts.speech_to_sil_time_thres
self.waveform = waveform # compute decibel for each frame
self.ComputeDecibel()
self.ComputeScores(score)
if not is_final:
self.DetectCommonFrames()
else:
self.DetectLastFrames()
segments = []
for batch_num in range(0, score.shape[0]): # only support batch_size = 1 now
segment_batch = []
if len(self.output_data_buf) > 0:
for i in range(self.output_data_buf_offset, len(self.output_data_buf)):
if online:
if not self.output_data_buf[i].contain_seg_start_point:
continue
if not self.next_seg and not self.output_data_buf[i].contain_seg_end_point:
continue
start_ms = self.output_data_buf[i].start_ms if self.next_seg else -1
if self.output_data_buf[i].contain_seg_end_point:
end_ms = self.output_data_buf[i].end_ms
self.next_seg = True
self.output_data_buf_offset += 1
else:
end_ms = -1
self.next_seg = False
else:
if not is_final and (not self.output_data_buf[i].contain_seg_start_point or not self.output_data_buf[
i].contain_seg_end_point):
continue
start_ms = self.output_data_buf[i].start_ms
end_ms = self.output_data_buf[i].end_ms
self.output_data_buf_offset += 1
segment = [start_ms, end_ms]
segment_batch.append(segment)
if segment_batch:
segments.append(segment_batch)
if is_final:
# reset class variables and clear the dict for the next query
self.AllResetDetection()
return segments
def DetectCommonFrames(self) -> int:
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
return 0
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
frame_state = FrameState.kFrameStateInvalid
frame_state = self.GetFrameState(self.frm_cnt - 1 - i)
self.DetectOneFrame(frame_state, self.frm_cnt - 1 - i, False)
self.idx_pre_chunk += self.scores.shape[1]
return 0
def DetectLastFrames(self) -> int:
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected:
return 0
for i in range(self.vad_opts.nn_eval_block_size - 1, -1, -1):
frame_state = FrameState.kFrameStateInvalid
frame_state = self.GetFrameState(self.frm_cnt - 1 - i)
if i != 0:
self.DetectOneFrame(frame_state, self.frm_cnt - 1 - i, False)
else:
self.DetectOneFrame(frame_state, self.frm_cnt - 1, True)
return 0
def DetectOneFrame(self, cur_frm_state: FrameState, cur_frm_idx: int, is_final_frame: bool) -> None:
tmp_cur_frm_state = FrameState.kFrameStateInvalid
if cur_frm_state == FrameState.kFrameStateSpeech:
if math.fabs(1.0) > self.vad_opts.fe_prior_thres:
tmp_cur_frm_state = FrameState.kFrameStateSpeech
else:
tmp_cur_frm_state = FrameState.kFrameStateSil
elif cur_frm_state == FrameState.kFrameStateSil:
tmp_cur_frm_state = FrameState.kFrameStateSil
state_change = self.windows_detector.DetectOneFrame(tmp_cur_frm_state, cur_frm_idx)
frm_shift_in_ms = self.vad_opts.frame_in_ms
if AudioChangeState.kChangeStateSil2Speech == state_change:
silence_frame_count = self.continous_silence_frame_count
self.continous_silence_frame_count = 0
self.pre_end_silence_detected = False
start_frame = 0
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
start_frame = max(self.data_buf_start_frame, cur_frm_idx - self.LatencyFrmNumAtStartPoint())
self.OnVoiceStart(start_frame)
self.vad_state_machine = VadStateMachine.kVadInStateInSpeechSegment
for t in range(start_frame + 1, cur_frm_idx + 1):
self.OnVoiceDetected(t)
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
for t in range(self.latest_confirmed_speech_frame + 1, cur_frm_idx):
self.OnVoiceDetected(t)
if cur_frm_idx - self.confirmed_start_frame + 1 > \
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
self.OnVoiceEnd(cur_frm_idx, False, False)
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
elif not is_final_frame:
self.OnVoiceDetected(cur_frm_idx)
else:
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
else:
pass
elif AudioChangeState.kChangeStateSpeech2Sil == state_change:
self.continous_silence_frame_count = 0
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
pass
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
if cur_frm_idx - self.confirmed_start_frame + 1 > \
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
self.OnVoiceEnd(cur_frm_idx, False, False)
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
elif not is_final_frame:
self.OnVoiceDetected(cur_frm_idx)
else:
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
else:
pass
elif AudioChangeState.kChangeStateSpeech2Speech == state_change:
self.continous_silence_frame_count = 0
if self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
if cur_frm_idx - self.confirmed_start_frame + 1 > \
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
self.max_time_out = True
self.OnVoiceEnd(cur_frm_idx, False, False)
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
elif not is_final_frame:
self.OnVoiceDetected(cur_frm_idx)
else:
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
else:
pass
elif AudioChangeState.kChangeStateSil2Sil == state_change:
self.continous_silence_frame_count += 1
if self.vad_state_machine == VadStateMachine.kVadInStateStartPointNotDetected:
# silence timeout, return zero length decision
if ((self.vad_opts.detect_mode == VadDetectMode.kVadSingleUtteranceDetectMode.value) and (
self.continous_silence_frame_count * frm_shift_in_ms > self.vad_opts.max_start_silence_time)) \
or (is_final_frame and self.number_end_time_detected == 0):
for t in range(self.lastest_confirmed_silence_frame + 1, cur_frm_idx):
self.OnSilenceDetected(t)
self.OnVoiceStart(0, True)
self.OnVoiceEnd(0, True, False);
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
else:
if cur_frm_idx >= self.LatencyFrmNumAtStartPoint():
self.OnSilenceDetected(cur_frm_idx - self.LatencyFrmNumAtStartPoint())
elif self.vad_state_machine == VadStateMachine.kVadInStateInSpeechSegment:
if self.continous_silence_frame_count * frm_shift_in_ms >= self.max_end_sil_frame_cnt_thresh:
lookback_frame = int(self.max_end_sil_frame_cnt_thresh / frm_shift_in_ms)
if self.vad_opts.do_extend:
lookback_frame -= int(self.vad_opts.lookahead_time_end_point / frm_shift_in_ms)
lookback_frame -= 1
lookback_frame = max(0, lookback_frame)
self.OnVoiceEnd(cur_frm_idx - lookback_frame, False, False)
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
elif cur_frm_idx - self.confirmed_start_frame + 1 > \
self.vad_opts.max_single_segment_time / frm_shift_in_ms:
self.OnVoiceEnd(cur_frm_idx, False, False)
self.vad_state_machine = VadStateMachine.kVadInStateEndPointDetected
elif self.vad_opts.do_extend and not is_final_frame:
if self.continous_silence_frame_count <= int(
self.vad_opts.lookahead_time_end_point / frm_shift_in_ms):
self.OnVoiceDetected(cur_frm_idx)
else:
self.MaybeOnVoiceEndIfLastFrame(is_final_frame, cur_frm_idx)
else:
pass
if self.vad_state_machine == VadStateMachine.kVadInStateEndPointDetected and \
self.vad_opts.detect_mode == VadDetectMode.kVadMutipleUtteranceDetectMode.value:
self.ResetDetection()

View File

@@ -0,0 +1,373 @@
# -*- encoding: utf-8 -*-
from pathlib import Path
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union
import copy
import numpy as np
from typeguard import check_argument_types
import kaldi_native_fbank as knf
root_dir = Path(__file__).resolve().parent
logger_initialized = {}
class WavFrontend():
"""Conventional frontend structure for ASR.
"""
def __init__(
self,
cmvn_file: str = None,
fs: int = 16000,
window: str = 'hamming',
n_mels: int = 80,
frame_length: int = 25,
frame_shift: int = 10,
lfr_m: int = 1,
lfr_n: int = 1,
dither: float = 1.0,
**kwargs,
) -> None:
check_argument_types()
opts = knf.FbankOptions()
opts.frame_opts.samp_freq = fs
opts.frame_opts.dither = dither
opts.frame_opts.window_type = window
opts.frame_opts.frame_shift_ms = float(frame_shift)
opts.frame_opts.frame_length_ms = float(frame_length)
opts.mel_opts.num_bins = n_mels
opts.energy_floor = 0
opts.frame_opts.snip_edges = True
opts.mel_opts.debug_mel = False
self.opts = opts
self.lfr_m = lfr_m
self.lfr_n = lfr_n
self.cmvn_file = cmvn_file
if self.cmvn_file:
self.cmvn = self.load_cmvn()
self.fbank_fn = None
self.fbank_beg_idx = 0
self.reset_status()
def fbank(self,
waveform: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
waveform = waveform * (1 << 15)
self.fbank_fn = knf.OnlineFbank(self.opts)
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
frames = self.fbank_fn.num_frames_ready
mat = np.empty([frames, self.opts.mel_opts.num_bins])
for i in range(frames):
mat[i, :] = self.fbank_fn.get_frame(i)
feat = mat.astype(np.float32)
feat_len = np.array(mat.shape[0]).astype(np.int32)
return feat, feat_len
def fbank_online(self,
waveform: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
waveform = waveform * (1 << 15)
# self.fbank_fn = knf.OnlineFbank(self.opts)
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
frames = self.fbank_fn.num_frames_ready
mat = np.empty([frames, self.opts.mel_opts.num_bins])
for i in range(self.fbank_beg_idx, frames):
mat[i, :] = self.fbank_fn.get_frame(i)
# self.fbank_beg_idx += (frames-self.fbank_beg_idx)
feat = mat.astype(np.float32)
feat_len = np.array(mat.shape[0]).astype(np.int32)
return feat, feat_len
def reset_status(self):
self.fbank_fn = knf.OnlineFbank(self.opts)
self.fbank_beg_idx = 0
def lfr_cmvn(self, feat: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
if self.lfr_m != 1 or self.lfr_n != 1:
feat = self.apply_lfr(feat, self.lfr_m, self.lfr_n)
if self.cmvn_file:
feat = self.apply_cmvn(feat)
feat_len = np.array(feat.shape[0]).astype(np.int32)
return feat, feat_len
@staticmethod
def apply_lfr(inputs: np.ndarray, lfr_m: int, lfr_n: int) -> np.ndarray:
LFR_inputs = []
T = inputs.shape[0]
T_lfr = int(np.ceil(T / lfr_n))
left_padding = np.tile(inputs[0], ((lfr_m - 1) // 2, 1))
inputs = np.vstack((left_padding, inputs))
T = T + (lfr_m - 1) // 2
for i in range(T_lfr):
if lfr_m <= T - i * lfr_n:
LFR_inputs.append(
(inputs[i * lfr_n:i * lfr_n + lfr_m]).reshape(1, -1))
else:
# process last LFR frame
num_padding = lfr_m - (T - i * lfr_n)
frame = inputs[i * lfr_n:].reshape(-1)
for _ in range(num_padding):
frame = np.hstack((frame, inputs[-1]))
LFR_inputs.append(frame)
LFR_outputs = np.vstack(LFR_inputs).astype(np.float32)
return LFR_outputs
def apply_cmvn(self, inputs: np.ndarray) -> np.ndarray:
"""
Apply CMVN with mvn data
"""
frame, dim = inputs.shape
means = np.tile(self.cmvn[0:1, :dim], (frame, 1))
vars = np.tile(self.cmvn[1:2, :dim], (frame, 1))
inputs = (inputs + means) * vars
return inputs
def load_cmvn(self,) -> np.ndarray:
with open(self.cmvn_file, 'r', encoding='utf-8') as f:
lines = f.readlines()
means_list = []
vars_list = []
for i in range(len(lines)):
line_item = lines[i].split()
if line_item[0] == '<AddShift>':
line_item = lines[i + 1].split()
if line_item[0] == '<LearnRateCoef>':
add_shift_line = line_item[3:(len(line_item) - 1)]
means_list = list(add_shift_line)
continue
elif line_item[0] == '<Rescale>':
line_item = lines[i + 1].split()
if line_item[0] == '<LearnRateCoef>':
rescale_line = line_item[3:(len(line_item) - 1)]
vars_list = list(rescale_line)
continue
means = np.array(means_list).astype(np.float64)
vars = np.array(vars_list).astype(np.float64)
cmvn = np.array([means, vars])
return cmvn
class WavFrontendOnline(WavFrontend):
def __init__(self, **kwargs):
super().__init__(**kwargs)
# self.fbank_fn = knf.OnlineFbank(self.opts)
# add variables
self.frame_sample_length = int(self.opts.frame_opts.frame_length_ms * self.opts.frame_opts.samp_freq / 1000)
self.frame_shift_sample_length = int(self.opts.frame_opts.frame_shift_ms * self.opts.frame_opts.samp_freq / 1000)
self.waveform = None
self.reserve_waveforms = None
self.input_cache = None
self.lfr_splice_cache = []
@staticmethod
# inputs has catted the cache
def apply_lfr(inputs: np.ndarray, lfr_m: int, lfr_n: int, is_final: bool = False) -> Tuple[
np.ndarray, np.ndarray, int]:
"""
Apply lfr with data
"""
LFR_inputs = []
T = inputs.shape[0] # include the right context
T_lfr = int(np.ceil((T - (lfr_m - 1) // 2) / lfr_n)) # minus the right context: (lfr_m - 1) // 2
splice_idx = T_lfr
for i in range(T_lfr):
if lfr_m <= T - i * lfr_n:
LFR_inputs.append((inputs[i * lfr_n:i * lfr_n + lfr_m]).reshape(1, -1))
else: # process last LFR frame
if is_final:
num_padding = lfr_m - (T - i * lfr_n)
frame = (inputs[i * lfr_n:]).reshape(-1)
for _ in range(num_padding):
frame = np.hstack((frame, inputs[-1]))
LFR_inputs.append(frame)
else:
# update splice_idx and break the circle
splice_idx = i
break
splice_idx = min(T - 1, splice_idx * lfr_n)
lfr_splice_cache = inputs[splice_idx:, :]
LFR_outputs = np.vstack(LFR_inputs)
return LFR_outputs.astype(np.float32), lfr_splice_cache, splice_idx
@staticmethod
def compute_frame_num(sample_length: int, frame_sample_length: int, frame_shift_sample_length: int) -> int:
frame_num = int((sample_length - frame_sample_length) / frame_shift_sample_length + 1)
return frame_num if frame_num >= 1 and sample_length >= frame_sample_length else 0
def fbank(
self,
input: np.ndarray,
input_lengths: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
self.fbank_fn = knf.OnlineFbank(self.opts)
batch_size = input.shape[0]
if self.input_cache is None:
self.input_cache = np.empty((batch_size, 0), dtype=np.float32)
input = np.concatenate((self.input_cache, input), axis=1)
frame_num = self.compute_frame_num(input.shape[-1], self.frame_sample_length, self.frame_shift_sample_length)
# update self.in_cache
self.input_cache = input[:, -(input.shape[-1] - frame_num * self.frame_shift_sample_length):]
waveforms = np.empty(0, dtype=np.float32)
feats_pad = np.empty(0, dtype=np.float32)
feats_lens = np.empty(0, dtype=np.int32)
if frame_num:
waveforms = []
feats = []
feats_lens = []
for i in range(batch_size):
waveform = input[i]
waveforms.append(
waveform[:((frame_num - 1) * self.frame_shift_sample_length + self.frame_sample_length)])
waveform = waveform * (1 << 15)
self.fbank_fn.accept_waveform(self.opts.frame_opts.samp_freq, waveform.tolist())
frames = self.fbank_fn.num_frames_ready
mat = np.empty([frames, self.opts.mel_opts.num_bins])
for i in range(frames):
mat[i, :] = self.fbank_fn.get_frame(i)
feat = mat.astype(np.float32)
feat_len = np.array(mat.shape[0]).astype(np.int32)
feats.append(feat)
feats_lens.append(feat_len)
waveforms = np.stack(waveforms)
feats_lens = np.array(feats_lens)
feats_pad = np.array(feats)
self.fbanks = feats_pad
self.fbanks_lens = copy.deepcopy(feats_lens)
return waveforms, feats_pad, feats_lens
def get_fbank(self) -> Tuple[np.ndarray, np.ndarray]:
return self.fbanks, self.fbanks_lens
def lfr_cmvn(
self,
input: np.ndarray,
input_lengths: np.ndarray,
is_final: bool = False
) -> Tuple[np.ndarray, np.ndarray, List[int]]:
batch_size = input.shape[0]
feats = []
feats_lens = []
lfr_splice_frame_idxs = []
for i in range(batch_size):
mat = input[i, :input_lengths[i], :]
lfr_splice_frame_idx = -1
if self.lfr_m != 1 or self.lfr_n != 1:
# update self.lfr_splice_cache in self.apply_lfr
mat, self.lfr_splice_cache[i], lfr_splice_frame_idx = self.apply_lfr(mat, self.lfr_m, self.lfr_n,
is_final)
if self.cmvn_file is not None:
mat = self.apply_cmvn(mat)
feat_length = mat.shape[0]
feats.append(mat)
feats_lens.append(feat_length)
lfr_splice_frame_idxs.append(lfr_splice_frame_idx)
feats_lens = np.array(feats_lens)
feats_pad = np.array(feats)
return feats_pad, feats_lens, lfr_splice_frame_idxs
def extract_fbank(
self, input: np.ndarray, input_lengths: np.ndarray, is_final: bool = False
) -> Tuple[np.ndarray, np.ndarray]:
batch_size = input.shape[0]
assert batch_size == 1, 'we support to extract feature online only when the batch size is equal to 1 now'
waveforms, feats, feats_lengths = self.fbank(input, input_lengths) # input shape: B T D
if feats.shape[0]:
self.waveforms = waveforms if self.reserve_waveforms is None else np.concatenate(
(self.reserve_waveforms, waveforms), axis=1)
if not self.lfr_splice_cache:
for i in range(batch_size):
self.lfr_splice_cache.append(np.expand_dims(feats[i][0, :], axis=0).repeat((self.lfr_m - 1) // 2, axis=0))
if feats_lengths[0] + self.lfr_splice_cache[0].shape[0] >= self.lfr_m:
lfr_splice_cache_np = np.stack(self.lfr_splice_cache) # B T D
feats = np.concatenate((lfr_splice_cache_np, feats), axis=1)
feats_lengths += lfr_splice_cache_np[0].shape[0]
frame_from_waveforms = int(
(self.waveforms.shape[1] - self.frame_sample_length) / self.frame_shift_sample_length + 1)
minus_frame = (self.lfr_m - 1) // 2 if self.reserve_waveforms is None else 0
feats, feats_lengths, lfr_splice_frame_idxs = self.lfr_cmvn(feats, feats_lengths, is_final)
if self.lfr_m == 1:
self.reserve_waveforms = None
else:
reserve_frame_idx = lfr_splice_frame_idxs[0] - minus_frame
# print('reserve_frame_idx: ' + str(reserve_frame_idx))
# print('frame_frame: ' + str(frame_from_waveforms))
self.reserve_waveforms = self.waveforms[:, reserve_frame_idx * self.frame_shift_sample_length:frame_from_waveforms * self.frame_shift_sample_length]
sample_length = (frame_from_waveforms - 1) * self.frame_shift_sample_length + self.frame_sample_length
self.waveforms = self.waveforms[:, :sample_length]
else:
# update self.reserve_waveforms and self.lfr_splice_cache
self.reserve_waveforms = self.waveforms[:,
:-(self.frame_sample_length - self.frame_shift_sample_length)]
for i in range(batch_size):
self.lfr_splice_cache[i] = np.concatenate((self.lfr_splice_cache[i], feats[i]), axis=0)
return np.empty(0, dtype=np.float32), feats_lengths
else:
if is_final:
self.waveforms = waveforms if self.reserve_waveforms is None else self.reserve_waveforms
feats = np.stack(self.lfr_splice_cache)
feats_lengths = np.zeros(batch_size, dtype=np.int32) + feats.shape[1]
feats, feats_lengths, _ = self.lfr_cmvn(feats, feats_lengths, is_final)
if is_final:
self.cache_reset()
return feats, feats_lengths
def get_waveforms(self):
return self.waveforms
def cache_reset(self):
self.fbank_fn = knf.OnlineFbank(self.opts)
self.reserve_waveforms = None
self.input_cache = None
self.lfr_splice_cache = []
def load_bytes(input):
middle_data = np.frombuffer(input, dtype=np.int16)
middle_data = np.asarray(middle_data)
if middle_data.dtype.kind not in 'iu':
raise TypeError("'middle_data' must be an array of integers")
dtype = np.dtype('float32')
if dtype.kind != 'f':
raise TypeError("'dtype' must be a floating point type")
i = np.iinfo(middle_data.dtype)
abs_max = 2 ** (i.bits - 1)
offset = i.min + abs_max
array = np.frombuffer((middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32)
return array
def test():
path = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav"
import librosa
cmvn_file = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/am.mvn"
config_file = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/config.yaml"
from funasr_local.runtime.python.onnxruntime.rapid_paraformer.utils.utils import read_yaml
config = read_yaml(config_file)
waveform, _ = librosa.load(path, sr=None)
frontend = WavFrontend(
cmvn_file=cmvn_file,
**config['frontend_conf'],
)
speech, _ = frontend.fbank_online(waveform) #1d, (sample,), numpy
feat, feat_len = frontend.lfr_cmvn(speech) # 2d, (frame, 450), np.float32 -> torch, torch.from_numpy(), dtype, (1, frame, 450)
frontend.reset_status() # clear cache
return feat, feat_len
if __name__ == '__main__':
test()

View File

@@ -0,0 +1,242 @@
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import string
import logging
from typing import Any, List, Union
def isChinese(ch: str):
if '\u4e00' <= ch <= '\u9fff' or '\u0030' <= ch <= '\u0039':
return True
return False
def isAllChinese(word: Union[List[Any], str]):
word_lists = []
for i in word:
cur = i.replace(' ', '')
cur = cur.replace('</s>', '')
cur = cur.replace('<s>', '')
word_lists.append(cur)
if len(word_lists) == 0:
return False
for ch in word_lists:
if isChinese(ch) is False:
return False
return True
def isAllAlpha(word: Union[List[Any], str]):
word_lists = []
for i in word:
cur = i.replace(' ', '')
cur = cur.replace('</s>', '')
cur = cur.replace('<s>', '')
word_lists.append(cur)
if len(word_lists) == 0:
return False
for ch in word_lists:
if ch.isalpha() is False and ch != "'":
return False
elif ch.isalpha() is True and isChinese(ch) is True:
return False
return True
# def abbr_dispose(words: List[Any]) -> List[Any]:
def abbr_dispose(words: List[Any], time_stamp: List[List] = None) -> List[Any]:
words_size = len(words)
word_lists = []
abbr_begin = []
abbr_end = []
last_num = -1
ts_lists = []
ts_nums = []
ts_index = 0
for num in range(words_size):
if num <= last_num:
continue
if len(words[num]) == 1 and words[num].encode('utf-8').isalpha():
if num + 1 < words_size and words[
num + 1] == ' ' and num + 2 < words_size and len(
words[num +
2]) == 1 and words[num +
2].encode('utf-8').isalpha():
# found the begin of abbr
abbr_begin.append(num)
num += 2
abbr_end.append(num)
# to find the end of abbr
while True:
num += 1
if num < words_size and words[num] == ' ':
num += 1
if num < words_size and len(
words[num]) == 1 and words[num].encode(
'utf-8').isalpha():
abbr_end.pop()
abbr_end.append(num)
last_num = num
else:
break
else:
break
for num in range(words_size):
if words[num] == ' ':
ts_nums.append(ts_index)
else:
ts_nums.append(ts_index)
ts_index += 1
last_num = -1
for num in range(words_size):
if num <= last_num:
continue
if num in abbr_begin:
if time_stamp is not None:
begin = time_stamp[ts_nums[num]][0]
word_lists.append(words[num].upper())
num += 1
while num < words_size:
if num in abbr_end:
word_lists.append(words[num].upper())
last_num = num
break
else:
if words[num].encode('utf-8').isalpha():
word_lists.append(words[num].upper())
num += 1
if time_stamp is not None:
end = time_stamp[ts_nums[num]][1]
ts_lists.append([begin, end])
else:
word_lists.append(words[num])
if time_stamp is not None and words[num] != ' ':
begin = time_stamp[ts_nums[num]][0]
end = time_stamp[ts_nums[num]][1]
ts_lists.append([begin, end])
begin = end
if time_stamp is not None:
return word_lists, ts_lists
else:
return word_lists
def sentence_postprocess(words: List[Any], time_stamp: List[List] = None):
middle_lists = []
word_lists = []
word_item = ''
ts_lists = []
# wash words lists
for i in words:
word = ''
if isinstance(i, str):
word = i
else:
word = i.decode('utf-8')
if word in ['<s>', '</s>', '<unk>']:
continue
else:
middle_lists.append(word)
# all chinese characters
if isAllChinese(middle_lists):
for i, ch in enumerate(middle_lists):
word_lists.append(ch.replace(' ', ''))
if time_stamp is not None:
ts_lists = time_stamp
# all alpha characters
elif isAllAlpha(middle_lists):
ts_flag = True
for i, ch in enumerate(middle_lists):
if ts_flag and time_stamp is not None:
begin = time_stamp[i][0]
end = time_stamp[i][1]
word = ''
if '@@' in ch:
word = ch.replace('@@', '')
word_item += word
if time_stamp is not None:
ts_flag = False
end = time_stamp[i][1]
else:
word_item += ch
word_lists.append(word_item)
word_lists.append(' ')
word_item = ''
if time_stamp is not None:
ts_flag = True
end = time_stamp[i][1]
ts_lists.append([begin, end])
begin = end
# mix characters
else:
alpha_blank = False
ts_flag = True
begin = -1
end = -1
for i, ch in enumerate(middle_lists):
if ts_flag and time_stamp is not None:
begin = time_stamp[i][0]
end = time_stamp[i][1]
word = ''
if isAllChinese(ch):
if alpha_blank is True:
word_lists.pop()
word_lists.append(ch)
alpha_blank = False
if time_stamp is not None:
ts_flag = True
ts_lists.append([begin, end])
begin = end
elif '@@' in ch:
word = ch.replace('@@', '')
word_item += word
alpha_blank = False
if time_stamp is not None:
ts_flag = False
end = time_stamp[i][1]
elif isAllAlpha(ch):
word_item += ch
word_lists.append(word_item)
word_lists.append(' ')
word_item = ''
alpha_blank = True
if time_stamp is not None:
ts_flag = True
end = time_stamp[i][1]
ts_lists.append([begin, end])
begin = end
else:
raise ValueError('invalid character: {}'.format(ch))
if time_stamp is not None:
word_lists, ts_lists = abbr_dispose(word_lists, ts_lists)
real_word_lists = []
for ch in word_lists:
if ch != ' ':
real_word_lists.append(ch)
sentence = ' '.join(real_word_lists).strip()
return sentence, ts_lists, real_word_lists
else:
word_lists = abbr_dispose(word_lists)
real_word_lists = []
for ch in word_lists:
if ch != ' ':
real_word_lists.append(ch)
sentence = ''.join(word_lists).strip()
return sentence, real_word_lists

View File

@@ -0,0 +1,63 @@
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import numpy as np
def time_stamp_lfr6_onnx(us_cif_peak, char_list, begin_time=0.0, total_offset=-1.5):
if not len(char_list):
return []
START_END_THRESHOLD = 5
MAX_TOKEN_DURATION = 30
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
cif_peak = us_cif_peak.reshape(-1)
num_frames = cif_peak.shape[-1]
if char_list[-1] == '</s>':
char_list = char_list[:-1]
# char_list = [i for i in text]
timestamp_list = []
new_char_list = []
# for bicif model trained with large data, cif2 actually fires when a character starts
# so treat the frames between two peaks as the duration of the former token
fire_place = np.where(cif_peak>1.0-1e-4)[0] + total_offset # np format
num_peak = len(fire_place)
assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
# begin silence
if fire_place[0] > START_END_THRESHOLD:
# char_list.insert(0, '<sil>')
timestamp_list.append([0.0, fire_place[0]*TIME_RATE])
new_char_list.append('<sil>')
# tokens timestamp
for i in range(len(fire_place)-1):
new_char_list.append(char_list[i])
if i == len(fire_place)-2 or MAX_TOKEN_DURATION < 0 or fire_place[i+1] - fire_place[i] < MAX_TOKEN_DURATION:
timestamp_list.append([fire_place[i]*TIME_RATE, fire_place[i+1]*TIME_RATE])
else:
# cut the duration to token and sil of the 0-weight frames last long
_split = fire_place[i] + MAX_TOKEN_DURATION
timestamp_list.append([fire_place[i]*TIME_RATE, _split*TIME_RATE])
timestamp_list.append([_split*TIME_RATE, fire_place[i+1]*TIME_RATE])
new_char_list.append('<sil>')
# tail token and end silence
if num_frames - fire_place[-1] > START_END_THRESHOLD:
_end = (num_frames + fire_place[-1]) / 2
timestamp_list[-1][1] = _end*TIME_RATE
timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE])
new_char_list.append("<sil>")
else:
timestamp_list[-1][1] = num_frames*TIME_RATE
if begin_time: # add offset time in model with vad
for i in range(len(timestamp_list)):
timestamp_list[i][0] = timestamp_list[i][0] + begin_time / 1000.0
timestamp_list[i][1] = timestamp_list[i][1] + begin_time / 1000.0
assert len(new_char_list) == len(timestamp_list)
res_str = ""
for char, timestamp in zip(new_char_list, timestamp_list):
res_str += "{} {} {};".format(char, timestamp[0], timestamp[1])
res = []
for char, timestamp in zip(new_char_list, timestamp_list):
if char != '<sil>':
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
return res_str, res

View File

@@ -0,0 +1,274 @@
# -*- encoding: utf-8 -*-
import functools
import logging
import pickle
from pathlib import Path
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union
import numpy as np
import yaml
from onnxruntime import (GraphOptimizationLevel, InferenceSession,
SessionOptions, get_available_providers, get_device)
from typeguard import check_argument_types
import warnings
root_dir = Path(__file__).resolve().parent
logger_initialized = {}
class TokenIDConverter():
def __init__(self, token_list: Union[List, str],
):
check_argument_types()
self.token_list = token_list
self.unk_symbol = token_list[-1]
self.token2id = {v: i for i, v in enumerate(self.token_list)}
self.unk_id = self.token2id[self.unk_symbol]
def get_num_vocabulary_size(self) -> int:
return len(self.token_list)
def ids2tokens(self,
integers: Union[np.ndarray, Iterable[int]]) -> List[str]:
if isinstance(integers, np.ndarray) and integers.ndim != 1:
raise TokenIDConverterError(
f"Must be 1 dim ndarray, but got {integers.ndim}")
return [self.token_list[i] for i in integers]
def tokens2ids(self, tokens: Iterable[str]) -> List[int]:
return [self.token2id.get(i, self.unk_id) for i in tokens]
class CharTokenizer():
def __init__(
self,
symbol_value: Union[Path, str, Iterable[str]] = None,
space_symbol: str = "<space>",
remove_non_linguistic_symbols: bool = False,
):
check_argument_types()
self.space_symbol = space_symbol
self.non_linguistic_symbols = self.load_symbols(symbol_value)
self.remove_non_linguistic_symbols = remove_non_linguistic_symbols
@staticmethod
def load_symbols(value: Union[Path, str, Iterable[str]] = None) -> Set:
if value is None:
return set()
if isinstance(value, Iterable[str]):
return set(value)
file_path = Path(value)
if not file_path.exists():
logging.warning("%s doesn't exist.", file_path)
return set()
with file_path.open("r", encoding="utf-8") as f:
return set(line.rstrip() for line in f)
def text2tokens(self, line: Union[str, list]) -> List[str]:
tokens = []
while len(line) != 0:
for w in self.non_linguistic_symbols:
if line.startswith(w):
if not self.remove_non_linguistic_symbols:
tokens.append(line[: len(w)])
line = line[len(w):]
break
else:
t = line[0]
if t == " ":
t = "<space>"
tokens.append(t)
line = line[1:]
return tokens
def tokens2text(self, tokens: Iterable[str]) -> str:
tokens = [t if t != self.space_symbol else " " for t in tokens]
return "".join(tokens)
def __repr__(self):
return (
f"{self.__class__.__name__}("
f'space_symbol="{self.space_symbol}"'
f'non_linguistic_symbols="{self.non_linguistic_symbols}"'
f")"
)
class Hypothesis(NamedTuple):
"""Hypothesis data type."""
yseq: np.ndarray
score: Union[float, np.ndarray] = 0
scores: Dict[str, Union[float, np.ndarray]] = dict()
states: Dict[str, Any] = dict()
def asdict(self) -> dict:
"""Convert data to JSON-friendly dict."""
return self._replace(
yseq=self.yseq.tolist(),
score=float(self.score),
scores={k: float(v) for k, v in self.scores.items()},
)._asdict()
class TokenIDConverterError(Exception):
pass
class ONNXRuntimeError(Exception):
pass
class OrtInferSession():
def __init__(self, model_file, device_id=-1, intra_op_num_threads=4):
device_id = str(device_id)
sess_opt = SessionOptions()
sess_opt.intra_op_num_threads = intra_op_num_threads
sess_opt.log_severity_level = 4
sess_opt.enable_cpu_mem_arena = False
sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
cuda_ep = 'CUDAExecutionProvider'
cuda_provider_options = {
"device_id": device_id,
"arena_extend_strategy": "kNextPowerOfTwo",
"cudnn_conv_algo_search": "EXHAUSTIVE",
"do_copy_in_default_stream": "true",
}
cpu_ep = 'CPUExecutionProvider'
cpu_provider_options = {
"arena_extend_strategy": "kSameAsRequested",
}
EP_list = []
if device_id != "-1" and get_device() == 'GPU' \
and cuda_ep in get_available_providers():
EP_list = [(cuda_ep, cuda_provider_options)]
EP_list.append((cpu_ep, cpu_provider_options))
self._verify_model(model_file)
self.session = InferenceSession(model_file,
sess_options=sess_opt,
providers=EP_list)
if device_id != "-1" and cuda_ep not in self.session.get_providers():
warnings.warn(f'{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n'
'Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, '
'you can check their relations from the offical web site: '
'https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html',
RuntimeWarning)
def __call__(self,
input_content: List[Union[np.ndarray, np.ndarray]]) -> np.ndarray:
input_dict = dict(zip(self.get_input_names(), input_content))
try:
return self.session.run(self.get_output_names(), input_dict)
except Exception as e:
raise ONNXRuntimeError('ONNXRuntime inferece failed.') from e
def get_input_names(self, ):
return [v.name for v in self.session.get_inputs()]
def get_output_names(self,):
return [v.name for v in self.session.get_outputs()]
def get_character_list(self, key: str = 'character'):
return self.meta_dict[key].splitlines()
def have_key(self, key: str = 'character') -> bool:
self.meta_dict = self.session.get_modelmeta().custom_metadata_map
if key in self.meta_dict.keys():
return True
return False
@staticmethod
def _verify_model(model_path):
model_path = Path(model_path)
if not model_path.exists():
raise FileNotFoundError(f'{model_path} does not exists.')
if not model_path.is_file():
raise FileExistsError(f'{model_path} is not a file.')
def split_to_mini_sentence(words: list, word_limit: int = 20):
assert word_limit > 1
if len(words) <= word_limit:
return [words]
sentences = []
length = len(words)
sentence_len = length // word_limit
for i in range(sentence_len):
sentences.append(words[i * word_limit:(i + 1) * word_limit])
if length % word_limit > 0:
sentences.append(words[sentence_len * word_limit:])
return sentences
def code_mix_split_words(text: str):
words = []
segs = text.split()
for seg in segs:
# There is no space in seg.
current_word = ""
for c in seg:
if len(c.encode()) == 1:
# This is an ASCII char.
current_word += c
else:
# This is a Chinese char.
if len(current_word) > 0:
words.append(current_word)
current_word = ""
words.append(c)
if len(current_word) > 0:
words.append(current_word)
return words
def read_yaml(yaml_path: Union[str, Path]) -> Dict:
if not Path(yaml_path).exists():
raise FileExistsError(f'The {yaml_path} does not exist.')
with open(str(yaml_path), 'rb') as f:
data = yaml.load(f, Loader=yaml.Loader)
return data
@functools.lru_cache()
def get_logger(name='funasr_local_onnx'):
"""Initialize and get a logger by name.
If the logger has not been initialized, this method will initialize the
logger by adding one or two handlers, otherwise the initialized logger will
be directly returned. During initialization, a StreamHandler will always be
added.
Args:
name (str): Logger name.
Returns:
logging.Logger: The expected logger.
"""
logger = logging.getLogger(name)
if name in logger_initialized:
return logger
for logger_name in logger_initialized:
if name.startswith(logger_name):
return logger
formatter = logging.Formatter(
'[%(asctime)s] %(name)s %(levelname)s: %(message)s',
datefmt="%Y/%m/%d %H:%M:%S")
sh = logging.StreamHandler()
sh.setFormatter(formatter)
logger.addHandler(sh)
logger_initialized[name] = True
logger.propagate = False
return logger

View File

@@ -0,0 +1,282 @@
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import os.path
from pathlib import Path
from typing import List, Union, Tuple
import copy
import librosa
import numpy as np
from .utils.utils import (ONNXRuntimeError,
OrtInferSession, get_logger,
read_yaml)
from .utils.frontend import WavFrontend, WavFrontendOnline
from .utils.e2e_vad import E2EVadModel
logging = get_logger()
class Fsmn_vad():
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
https://arxiv.org/abs/1803.05030
"""
def __init__(self, model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
quantize: bool = False,
intra_op_num_threads: int = 4,
max_end_sil: int = None,
):
if not Path(model_dir).exists():
raise FileNotFoundError(f'{model_dir} does not exist.')
model_file = os.path.join(model_dir, 'model.onnx')
if quantize:
model_file = os.path.join(model_dir, 'model_quant.onnx')
config_file = os.path.join(model_dir, 'vad.yaml')
cmvn_file = os.path.join(model_dir, 'vad.mvn')
config = read_yaml(config_file)
self.frontend = WavFrontend(
cmvn_file=cmvn_file,
**config['frontend_conf']
)
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
self.batch_size = batch_size
self.vad_scorer = E2EVadModel(config["vad_post_conf"])
self.max_end_sil = max_end_sil if max_end_sil is not None else config["vad_post_conf"]["max_end_silence_time"]
self.encoder_conf = config["encoder_conf"]
def prepare_cache(self, in_cache: list = []):
if len(in_cache) > 0:
return in_cache
fsmn_layers = self.encoder_conf["fsmn_layers"]
proj_dim = self.encoder_conf["proj_dim"]
lorder = self.encoder_conf["lorder"]
for i in range(fsmn_layers):
cache = np.zeros((1, proj_dim, lorder-1, 1)).astype(np.float32)
in_cache.append(cache)
return in_cache
def __call__(self, audio_in: Union[str, np.ndarray, List[str]], **kwargs) -> List:
waveform_list = self.load_data(audio_in, self.frontend.opts.frame_opts.samp_freq)
waveform_nums = len(waveform_list)
is_final = kwargs.get('kwargs', False)
segments = [[]] * self.batch_size
for beg_idx in range(0, waveform_nums, self.batch_size):
end_idx = min(waveform_nums, beg_idx + self.batch_size)
waveform = waveform_list[beg_idx:end_idx]
feats, feats_len = self.extract_feat(waveform)
waveform = np.array(waveform)
param_dict = kwargs.get('param_dict', dict())
in_cache = param_dict.get('in_cache', list())
in_cache = self.prepare_cache(in_cache)
try:
t_offset = 0
step = int(min(feats_len.max(), 6000))
for t_offset in range(0, int(feats_len), min(step, feats_len - t_offset)):
if t_offset + step >= feats_len - 1:
step = feats_len - t_offset
is_final = True
else:
is_final = False
feats_package = feats[:, t_offset:int(t_offset + step), :]
waveform_package = waveform[:, t_offset * 160:min(waveform.shape[-1], (int(t_offset + step) - 1) * 160 + 400)]
inputs = [feats_package]
# inputs = [feats]
inputs.extend(in_cache)
scores, out_caches = self.infer(inputs)
in_cache = out_caches
segments_part = self.vad_scorer(scores, waveform_package, is_final=is_final, max_end_sil=self.max_end_sil, online=False)
# segments = self.vad_scorer(scores, waveform[0][None, :], is_final=is_final, max_end_sil=self.max_end_sil)
if segments_part:
for batch_num in range(0, self.batch_size):
segments[batch_num] += segments_part[batch_num]
except ONNXRuntimeError:
# logging.warning(traceback.format_exc())
logging.warning("input wav is silence or noise")
segments = ''
return segments
def load_data(self,
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
def load_wav(path: str) -> np.ndarray:
waveform, _ = librosa.load(path, sr=fs)
return waveform
if isinstance(wav_content, np.ndarray):
return [wav_content]
if isinstance(wav_content, str):
return [load_wav(wav_content)]
if isinstance(wav_content, list):
return [load_wav(path) for path in wav_content]
raise TypeError(
f'The type of {wav_content} is not in [str, np.ndarray, list]')
def extract_feat(self,
waveform_list: List[np.ndarray]
) -> Tuple[np.ndarray, np.ndarray]:
feats, feats_len = [], []
for waveform in waveform_list:
speech, _ = self.frontend.fbank(waveform)
feat, feat_len = self.frontend.lfr_cmvn(speech)
feats.append(feat)
feats_len.append(feat_len)
feats = self.pad_feats(feats, np.max(feats_len))
feats_len = np.array(feats_len).astype(np.int32)
return feats, feats_len
@staticmethod
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
pad_width = ((0, max_feat_len - cur_len), (0, 0))
return np.pad(feat, pad_width, 'constant', constant_values=0)
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
feats = np.array(feat_res).astype(np.float32)
return feats
def infer(self, feats: List) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer(feats)
scores, out_caches = outputs[0], outputs[1:]
return scores, out_caches
class Fsmn_vad_online():
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Deep-FSMN for Large Vocabulary Continuous Speech Recognition
https://arxiv.org/abs/1803.05030
"""
def __init__(self, model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
quantize: bool = False,
intra_op_num_threads: int = 4,
max_end_sil: int = None,
):
if not Path(model_dir).exists():
raise FileNotFoundError(f'{model_dir} does not exist.')
model_file = os.path.join(model_dir, 'model.onnx')
if quantize:
model_file = os.path.join(model_dir, 'model_quant.onnx')
config_file = os.path.join(model_dir, 'vad.yaml')
cmvn_file = os.path.join(model_dir, 'vad.mvn')
config = read_yaml(config_file)
self.frontend = WavFrontendOnline(
cmvn_file=cmvn_file,
**config['frontend_conf']
)
self.ort_infer = OrtInferSession(model_file, device_id, intra_op_num_threads=intra_op_num_threads)
self.batch_size = batch_size
self.vad_scorer = E2EVadModel(config["vad_post_conf"])
self.max_end_sil = max_end_sil if max_end_sil is not None else config["vad_post_conf"]["max_end_silence_time"]
self.encoder_conf = config["encoder_conf"]
def prepare_cache(self, in_cache: list = []):
if len(in_cache) > 0:
return in_cache
fsmn_layers = self.encoder_conf["fsmn_layers"]
proj_dim = self.encoder_conf["proj_dim"]
lorder = self.encoder_conf["lorder"]
for i in range(fsmn_layers):
cache = np.zeros((1, proj_dim, lorder - 1, 1)).astype(np.float32)
in_cache.append(cache)
return in_cache
def __call__(self, audio_in: np.ndarray, **kwargs) -> List:
waveforms = np.expand_dims(audio_in, axis=0)
param_dict = kwargs.get('param_dict', dict())
is_final = param_dict.get('is_final', False)
feats, feats_len = self.extract_feat(waveforms, is_final)
segments = []
if feats.size != 0:
in_cache = param_dict.get('in_cache', list())
in_cache = self.prepare_cache(in_cache)
try:
inputs = [feats]
inputs.extend(in_cache)
scores, out_caches = self.infer(inputs)
param_dict['in_cache'] = out_caches
waveforms = self.frontend.get_waveforms()
segments = self.vad_scorer(scores, waveforms, is_final=is_final, max_end_sil=self.max_end_sil,
online=True)
except ONNXRuntimeError:
# logging.warning(traceback.format_exc())
logging.warning("input wav is silence or noise")
segments = []
return segments
def load_data(self,
wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
def load_wav(path: str) -> np.ndarray:
waveform, _ = librosa.load(path, sr=fs)
return waveform
if isinstance(wav_content, np.ndarray):
return [wav_content]
if isinstance(wav_content, str):
return [load_wav(wav_content)]
if isinstance(wav_content, list):
return [load_wav(path) for path in wav_content]
raise TypeError(
f'The type of {wav_content} is not in [str, np.ndarray, list]')
def extract_feat(self,
waveforms: np.ndarray, is_final: bool = False
) -> Tuple[np.ndarray, np.ndarray]:
waveforms_lens = np.zeros(waveforms.shape[0]).astype(np.int32)
for idx, waveform in enumerate(waveforms):
waveforms_lens[idx] = waveform.shape[-1]
feats, feats_len = self.frontend.extract_fbank(waveforms, waveforms_lens, is_final)
# feats.append(feat)
# feats_len.append(feat_len)
# feats = self.pad_feats(feats, np.max(feats_len))
# feats_len = np.array(feats_len).astype(np.int32)
return feats.astype(np.float32), feats_len.astype(np.int32)
@staticmethod
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
pad_width = ((0, max_feat_len - cur_len), (0, 0))
return np.pad(feat, pad_width, 'constant', constant_values=0)
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
feats = np.array(feat_res).astype(np.float32)
return feats
def infer(self, feats: List) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer(feats)
scores, out_caches = outputs[0], outputs[1:]
return scores, out_caches

View File

@@ -0,0 +1,45 @@
# -*- encoding: utf-8 -*-
from pathlib import Path
import setuptools
def get_readme():
root_dir = Path(__file__).resolve().parent
readme_path = str(root_dir / 'README.md')
print(readme_path)
with open(readme_path, 'r', encoding='utf-8') as f:
readme = f.read()
return readme
MODULE_NAME = 'funasr_local_onnx'
VERSION_NUM = '0.0.6'
setuptools.setup(
name=MODULE_NAME,
version=VERSION_NUM,
platforms="Any",
url="https://github.com/alibaba-damo-academy/FunASR.git",
author="Speech Lab of DAMO Academy, Alibaba Group",
author_email="funasr_local@list.alibaba-inc.com",
description="FunASR: A Fundamental End-to-End Speech Recognition Toolkit",
license='MIT',
long_description=get_readme(),
long_description_content_type='text/markdown',
include_package_data=True,
install_requires=["librosa", "onnxruntime>=1.7.0",
"scipy", "numpy>=1.19.3",
"typeguard", "kaldi-native-fbank",
"PyYAML>=5.1.2"],
packages=[MODULE_NAME, f'{MODULE_NAME}.utils'],
keywords=[
'funasr_local,asr'
],
classifiers=[
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
],
)

View File

@@ -0,0 +1,157 @@
import os
import numpy as np
import sys
def compute_wer(ref_file,
hyp_file,
cer_detail_file):
rst = {
'Wrd': 0,
'Corr': 0,
'Ins': 0,
'Del': 0,
'Sub': 0,
'Snt': 0,
'Err': 0.0,
'S.Err': 0.0,
'wrong_words': 0,
'wrong_sentences': 0
}
hyp_dict = {}
ref_dict = {}
with open(hyp_file, 'r') as hyp_reader:
for line in hyp_reader:
key = line.strip().split()[0]
value = line.strip().split()[1:]
hyp_dict[key] = value
with open(ref_file, 'r') as ref_reader:
for line in ref_reader:
key = line.strip().split()[0]
value = line.strip().split()[1:]
ref_dict[key] = value
cer_detail_writer = open(cer_detail_file, 'w')
for hyp_key in hyp_dict:
if hyp_key in ref_dict:
out_item = compute_wer_by_line(hyp_dict[hyp_key], ref_dict[hyp_key])
rst['Wrd'] += out_item['nwords']
rst['Corr'] += out_item['cor']
rst['wrong_words'] += out_item['wrong']
rst['Ins'] += out_item['ins']
rst['Del'] += out_item['del']
rst['Sub'] += out_item['sub']
rst['Snt'] += 1
if out_item['wrong'] > 0:
rst['wrong_sentences'] += 1
cer_detail_writer.write(hyp_key + print_cer_detail(out_item) + '\n')
cer_detail_writer.write("ref:" + '\t' + "".join(ref_dict[hyp_key]) + '\n')
cer_detail_writer.write("hyp:" + '\t' + "".join(hyp_dict[hyp_key]) + '\n')
if rst['Wrd'] > 0:
rst['Err'] = round(rst['wrong_words'] * 100 / rst['Wrd'], 2)
if rst['Snt'] > 0:
rst['S.Err'] = round(rst['wrong_sentences'] * 100 / rst['Snt'], 2)
cer_detail_writer.write('\n')
cer_detail_writer.write("%WER " + str(rst['Err']) + " [ " + str(rst['wrong_words'])+ " / " + str(rst['Wrd']) +
", " + str(rst['Ins']) + " ins, " + str(rst['Del']) + " del, " + str(rst['Sub']) + " sub ]" + '\n')
cer_detail_writer.write("%SER " + str(rst['S.Err']) + " [ " + str(rst['wrong_sentences']) + " / " + str(rst['Snt']) + " ]" + '\n')
cer_detail_writer.write("Scored " + str(len(hyp_dict)) + " sentences, " + str(len(hyp_dict) - rst['Snt']) + " not present in hyp." + '\n')
def compute_wer_by_line(hyp,
ref):
hyp = list(map(lambda x: x.lower(), hyp))
ref = list(map(lambda x: x.lower(), ref))
len_hyp = len(hyp)
len_ref = len(ref)
cost_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int16)
ops_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int8)
for i in range(len_hyp + 1):
cost_matrix[i][0] = i
for j in range(len_ref + 1):
cost_matrix[0][j] = j
for i in range(1, len_hyp + 1):
for j in range(1, len_ref + 1):
if hyp[i - 1] == ref[j - 1]:
cost_matrix[i][j] = cost_matrix[i - 1][j - 1]
else:
substitution = cost_matrix[i - 1][j - 1] + 1
insertion = cost_matrix[i - 1][j] + 1
deletion = cost_matrix[i][j - 1] + 1
compare_val = [substitution, insertion, deletion]
min_val = min(compare_val)
operation_idx = compare_val.index(min_val) + 1
cost_matrix[i][j] = min_val
ops_matrix[i][j] = operation_idx
match_idx = []
i = len_hyp
j = len_ref
rst = {
'nwords': len_ref,
'cor': 0,
'wrong': 0,
'ins': 0,
'del': 0,
'sub': 0
}
while i >= 0 or j >= 0:
i_idx = max(0, i)
j_idx = max(0, j)
if ops_matrix[i_idx][j_idx] == 0: # correct
if i - 1 >= 0 and j - 1 >= 0:
match_idx.append((j - 1, i - 1))
rst['cor'] += 1
i -= 1
j -= 1
elif ops_matrix[i_idx][j_idx] == 2: # insert
i -= 1
rst['ins'] += 1
elif ops_matrix[i_idx][j_idx] == 3: # delete
j -= 1
rst['del'] += 1
elif ops_matrix[i_idx][j_idx] == 1: # substitute
i -= 1
j -= 1
rst['sub'] += 1
if i < 0 and j >= 0:
rst['del'] += 1
elif j < 0 and i >= 0:
rst['ins'] += 1
match_idx.reverse()
wrong_cnt = cost_matrix[len_hyp][len_ref]
rst['wrong'] = wrong_cnt
return rst
def print_cer_detail(rst):
return ("(" + "nwords=" + str(rst['nwords']) + ",cor=" + str(rst['cor'])
+ ",ins=" + str(rst['ins']) + ",del=" + str(rst['del']) + ",sub="
+ str(rst['sub']) + ") corr:" + '{:.2%}'.format(rst['cor']/rst['nwords'])
+ ",cer:" + '{:.2%}'.format(rst['wrong']/rst['nwords']))
if __name__ == '__main__':
if len(sys.argv) != 4:
print("usage : python compute-wer.py test.ref test.hyp test.wer")
sys.exit(0)
ref_file = sys.argv[1]
hyp_file = sys.argv[2]
cer_detail_file = sys.argv[3]
compute_wer(ref_file, hyp_file, cer_detail_file)

View File

@@ -0,0 +1,31 @@
import sys
import re
in_f = sys.argv[1]
out_f = sys.argv[2]
with open(in_f, "r", encoding="utf-8") as f:
lines = f.readlines()
with open(out_f, "w", encoding="utf-8") as f:
for line in lines:
outs = line.strip().split(" ", 1)
if len(outs) == 2:
idx, text = outs
text = re.sub("</s>", "", text)
text = re.sub("<s>", "", text)
text = re.sub("@@", "", text)
text = re.sub("@", "", text)
text = re.sub("<unk>", "", text)
text = re.sub(" ", "", text)
text = text.lower()
else:
idx = outs[0]
text = " "
text = [x for x in text]
text = " ".join(text)
out = "{} {}\n".format(idx, text)
f.write(out)

View File

@@ -0,0 +1,5 @@
onnx
onnxruntime
torch-quant >= 0.4.0
funasr_torch
funasr_onnx

View File

@@ -0,0 +1,246 @@
#!/usr/bin/env perl
# Copyright 2010-2011 Microsoft Corporation
# See ../../COPYING for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
# WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
# MERCHANTABLITY OR NON-INFRINGEMENT.
# See the Apache 2 License for the specific language governing permissions and
# limitations under the License.
# This program splits up any kind of .scp or archive-type file.
# If there is no utt2spk option it will work on any text file and
# will split it up with an approximately equal number of lines in
# each but.
# With the --utt2spk option it will work on anything that has the
# utterance-id as the first entry on each line; the utt2spk file is
# of the form "utterance speaker" (on each line).
# It splits it into equal size chunks as far as it can. If you use the utt2spk
# option it will make sure these chunks coincide with speaker boundaries. In
# this case, if there are more chunks than speakers (and in some other
# circumstances), some of the resulting chunks will be empty and it will print
# an error message and exit with nonzero status.
# You will normally call this like:
# split_scp.pl scp scp.1 scp.2 scp.3 ...
# or
# split_scp.pl --utt2spk=utt2spk scp scp.1 scp.2 scp.3 ...
# Note that you can use this script to split the utt2spk file itself,
# e.g. split_scp.pl --utt2spk=utt2spk utt2spk utt2spk.1 utt2spk.2 ...
# You can also call the scripts like:
# split_scp.pl -j 3 0 scp scp.0
# [note: with this option, it assumes zero-based indexing of the split parts,
# i.e. the second number must be 0 <= n < num-jobs.]
use warnings;
$num_jobs = 0;
$job_id = 0;
$utt2spk_file = "";
$one_based = 0;
for ($x = 1; $x <= 3 && @ARGV > 0; $x++) {
if ($ARGV[0] eq "-j") {
shift @ARGV;
$num_jobs = shift @ARGV;
$job_id = shift @ARGV;
}
if ($ARGV[0] =~ /--utt2spk=(.+)/) {
$utt2spk_file=$1;
shift;
}
if ($ARGV[0] eq '--one-based') {
$one_based = 1;
shift @ARGV;
}
}
if ($num_jobs != 0 && ($num_jobs < 0 || $job_id - $one_based < 0 ||
$job_id - $one_based >= $num_jobs)) {
die "$0: Invalid job number/index values for '-j $num_jobs $job_id" .
($one_based ? " --one-based" : "") . "'\n"
}
$one_based
and $job_id--;
if(($num_jobs == 0 && @ARGV < 2) || ($num_jobs > 0 && (@ARGV < 1 || @ARGV > 2))) {
die
"Usage: split_scp.pl [--utt2spk=<utt2spk_file>] in.scp out1.scp out2.scp ...
or: split_scp.pl -j num-jobs job-id [--one-based] [--utt2spk=<utt2spk_file>] in.scp [out.scp]
... where 0 <= job-id < num-jobs, or 1 <= job-id <- num-jobs if --one-based.\n";
}
$error = 0;
$inscp = shift @ARGV;
if ($num_jobs == 0) { # without -j option
@OUTPUTS = @ARGV;
} else {
for ($j = 0; $j < $num_jobs; $j++) {
if ($j == $job_id) {
if (@ARGV > 0) { push @OUTPUTS, $ARGV[0]; }
else { push @OUTPUTS, "-"; }
} else {
push @OUTPUTS, "/dev/null";
}
}
}
if ($utt2spk_file ne "") { # We have the --utt2spk option...
open($u_fh, '<', $utt2spk_file) || die "$0: Error opening utt2spk file $utt2spk_file: $!\n";
while(<$u_fh>) {
@A = split;
@A == 2 || die "$0: Bad line $_ in utt2spk file $utt2spk_file\n";
($u,$s) = @A;
$utt2spk{$u} = $s;
}
close $u_fh;
open($i_fh, '<', $inscp) || die "$0: Error opening input scp file $inscp: $!\n";
@spkrs = ();
while(<$i_fh>) {
@A = split;
if(@A == 0) { die "$0: Empty or space-only line in scp file $inscp\n"; }
$u = $A[0];
$s = $utt2spk{$u};
defined $s || die "$0: No utterance $u in utt2spk file $utt2spk_file\n";
if(!defined $spk_count{$s}) {
push @spkrs, $s;
$spk_count{$s} = 0;
$spk_data{$s} = []; # ref to new empty array.
}
$spk_count{$s}++;
push @{$spk_data{$s}}, $_;
}
# Now split as equally as possible ..
# First allocate spks to files by allocating an approximately
# equal number of speakers.
$numspks = @spkrs; # number of speakers.
$numscps = @OUTPUTS; # number of output files.
if ($numspks < $numscps) {
die "$0: Refusing to split data because number of speakers $numspks " .
"is less than the number of output .scp files $numscps\n";
}
for($scpidx = 0; $scpidx < $numscps; $scpidx++) {
$scparray[$scpidx] = []; # [] is array reference.
}
for ($spkidx = 0; $spkidx < $numspks; $spkidx++) {
$scpidx = int(($spkidx*$numscps) / $numspks);
$spk = $spkrs[$spkidx];
push @{$scparray[$scpidx]}, $spk;
$scpcount[$scpidx] += $spk_count{$spk};
}
# Now will try to reassign beginning + ending speakers
# to different scp's and see if it gets more balanced.
# Suppose objf we're minimizing is sum_i (num utts in scp[i] - average)^2.
# We can show that if considering changing just 2 scp's, we minimize
# this by minimizing the squared difference in sizes. This is
# equivalent to minimizing the absolute difference in sizes. This
# shows this method is bound to converge.
$changed = 1;
while($changed) {
$changed = 0;
for($scpidx = 0; $scpidx < $numscps; $scpidx++) {
# First try to reassign ending spk of this scp.
if($scpidx < $numscps-1) {
$sz = @{$scparray[$scpidx]};
if($sz > 0) {
$spk = $scparray[$scpidx]->[$sz-1];
$count = $spk_count{$spk};
$nutt1 = $scpcount[$scpidx];
$nutt2 = $scpcount[$scpidx+1];
if( abs( ($nutt2+$count) - ($nutt1-$count))
< abs($nutt2 - $nutt1)) { # Would decrease
# size-diff by reassigning spk...
$scpcount[$scpidx+1] += $count;
$scpcount[$scpidx] -= $count;
pop @{$scparray[$scpidx]};
unshift @{$scparray[$scpidx+1]}, $spk;
$changed = 1;
}
}
}
if($scpidx > 0 && @{$scparray[$scpidx]} > 0) {
$spk = $scparray[$scpidx]->[0];
$count = $spk_count{$spk};
$nutt1 = $scpcount[$scpidx-1];
$nutt2 = $scpcount[$scpidx];
if( abs( ($nutt2-$count) - ($nutt1+$count))
< abs($nutt2 - $nutt1)) { # Would decrease
# size-diff by reassigning spk...
$scpcount[$scpidx-1] += $count;
$scpcount[$scpidx] -= $count;
shift @{$scparray[$scpidx]};
push @{$scparray[$scpidx-1]}, $spk;
$changed = 1;
}
}
}
}
# Now print out the files...
for($scpidx = 0; $scpidx < $numscps; $scpidx++) {
$scpfile = $OUTPUTS[$scpidx];
($scpfile ne '-' ? open($f_fh, '>', $scpfile)
: open($f_fh, '>&', \*STDOUT)) ||
die "$0: Could not open scp file $scpfile for writing: $!\n";
$count = 0;
if(@{$scparray[$scpidx]} == 0) {
print STDERR "$0: eError: split_scp.pl producing empty .scp file " .
"$scpfile (too many splits and too few speakers?)\n";
$error = 1;
} else {
foreach $spk ( @{$scparray[$scpidx]} ) {
print $f_fh @{$spk_data{$spk}};
$count += $spk_count{$spk};
}
$count == $scpcount[$scpidx] || die "Count mismatch [code error]";
}
close($f_fh);
}
} else {
# This block is the "normal" case where there is no --utt2spk
# option and we just break into equal size chunks.
open($i_fh, '<', $inscp) || die "$0: Error opening input scp file $inscp: $!\n";
$numscps = @OUTPUTS; # size of array.
@F = ();
while(<$i_fh>) {
push @F, $_;
}
$numlines = @F;
if($numlines == 0) {
print STDERR "$0: error: empty input scp file $inscp\n";
$error = 1;
}
$linesperscp = int( $numlines / $numscps); # the "whole part"..
$linesperscp >= 1 || die "$0: You are splitting into too many pieces! [reduce \$nj ($numscps) to be smaller than the number of lines ($numlines) in $inscp]\n";
$remainder = $numlines - ($linesperscp * $numscps);
($remainder >= 0 && $remainder < $numlines) || die "bad remainder $remainder";
# [just doing int() rounds down].
$n = 0;
for($scpidx = 0; $scpidx < @OUTPUTS; $scpidx++) {
$scpfile = $OUTPUTS[$scpidx];
($scpfile ne '-' ? open($o_fh, '>', $scpfile)
: open($o_fh, '>&', \*STDOUT)) ||
die "$0: Could not open scp file $scpfile for writing: $!\n";
for($k = 0; $k < $linesperscp + ($scpidx < $remainder ? 1 : 0); $k++) {
print $o_fh $F[$n++];
}
close($o_fh) || die "$0: Eror closing scp file $scpfile: $!\n";
}
$n == $numlines || die "$n != $numlines [code error]";
}
exit ($error);

View File

@@ -0,0 +1,48 @@
import os
import time
import sys
import librosa
from funasr_local.utils.types import str2bool
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, required=True)
parser.add_argument('--backend', type=str, default='onnx', help='["onnx", "torch"]')
parser.add_argument('--wav_file', type=str, default=None, help='amp fallback number')
parser.add_argument('--quantize', type=str2bool, default=False, help='quantized model')
parser.add_argument('--intra_op_num_threads', type=int, default=1, help='intra_op_num_threads for onnx')
parser.add_argument('--output_dir', type=str, default=None, help='amp fallback number')
args = parser.parse_args()
from funasr_local.runtime.python.libtorch.funasr_local_torch import Paraformer
if args.backend == "onnx":
from funasr_local.runtime.python.onnxruntime.funasr_local_onnx import Paraformer
model = Paraformer(args.model_dir, batch_size=1, quantize=args.quantize, intra_op_num_threads=args.intra_op_num_threads)
wav_file_f = open(args.wav_file, 'r')
wav_files = wav_file_f.readlines()
output_dir = args.output_dir
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if os.name == 'nt': # Windows
newline = '\r\n'
else: # Linux Mac
newline = '\n'
text_f = open(os.path.join(output_dir, "text"), "w", newline=newline)
token_f = open(os.path.join(output_dir, "token"), "w", newline=newline)
for i, wav_path_i in enumerate(wav_files):
wav_name, wav_path = wav_path_i.strip().split()
result = model(wav_path)
text_i = "{} {}\n".format(wav_name, result[0]['preds'][0])
token_i = "{} {}\n".format(wav_name, result[0]['preds'][1])
text_f.write(text_i)
text_f.flush()
token_f.write(token_i)
token_f.flush()
text_f.close()
token_f.close()

View File

@@ -0,0 +1,74 @@
split_scps_tool=split_scp.pl
inference_tool=test_cer.py
proce_text_tool=proce_text.py
compute_wer_tool=compute_wer.py
nj=32
stage=0
stop_stage=2
scp="/nfs/haoneng.lhn/funasr_data/aishell-1/data/test/wav.scp"
label_text="/nfs/haoneng.lhn/funasr_data/aishell-1/data/test/text"
export_root="/nfs/zhifu.gzf/export"
#:<<!
model_name="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
backend="onnx" # "torch"
quantize='true' # 'False'
fallback_op_num_torch=20
tag=${model_name}/${backend}_quantize_${quantize}_${fallback_op_num_torch}
!
output_dir=${export_root}/logs/${tag}/split$nj
mkdir -p ${output_dir}
echo ${output_dir}
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ];then
python -m funasr.export.export_model --model-name ${model_name} --export-dir ${export_root} --type ${backend} --quantize ${quantize} --audio_in ${scp} --fallback-num ${fallback_op_num_torch}
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
model_dir=${export_root}/${model_name}
split_scps=""
for JOB in $(seq ${nj}); do
split_scps="$split_scps $output_dir/wav.$JOB.scp"
done
perl ${split_scps_tool} $scp ${split_scps}
for JOB in $(seq ${nj}); do
{
core_id=`expr $JOB - 1`
taskset -c ${core_id} python ${inference_tool} --backend ${backend} --model_dir ${model_dir} --wav_file ${output_dir}/wav.$JOB.scp --quantize ${quantize} --output_dir ${output_dir}/${JOB} &> ${output_dir}/log.$JOB.txt
}&
done
wait
mkdir -p ${output_dir}/1best_recog
for f in token text; do
if [ -f "${output_dir}/1/${f}" ]; then
for JOB in $(seq "${nj}"); do
cat "${output_dir}/${JOB}/${f}"
done | sort -k1 >"${output_dir}/1best_recog/${f}"
fi
done
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then
echo "Computing WER ..."
python ${proce_text_tool} ${output_dir}/1best_recog/text ${output_dir}/1best_recog/text.proc
python ${proce_text_tool} ${label_text} ${output_dir}/1best_recog/text.ref
python ${compute_wer_tool} ${output_dir}/1best_recog/text.ref ${output_dir}/1best_recog/text.proc ${output_dir}/1best_recog/text.cer
tail -n 3 ${output_dir}/1best_recog/text.cer
fi

View File

@@ -0,0 +1,55 @@
import time
import sys
import librosa
from funasr_local.utils.types import str2bool
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, required=True)
parser.add_argument('--backend', type=str, default='onnx', help='["onnx", "torch"]')
parser.add_argument('--wav_file', type=str, default=None, help='amp fallback number')
parser.add_argument('--quantize', type=str2bool, default=False, help='quantized model')
parser.add_argument('--intra_op_num_threads', type=int, default=1, help='intra_op_num_threads for onnx')
args = parser.parse_args()
from funasr_local.runtime.python.libtorch.funasr_local_torch import Paraformer
if args.backend == "onnx":
from funasr_local.runtime.python.onnxruntime.funasr_local_onnx import Paraformer
model = Paraformer(args.model_dir, batch_size=1, quantize=args.quantize, intra_op_num_threads=args.intra_op_num_threads)
wav_file_f = open(args.wav_file, 'r')
wav_files = wav_file_f.readlines()
# warm-up
total = 0.0
num = 30
wav_path = wav_files[0].split("\t")[1].strip() if "\t" in wav_files[0] else wav_files[0].split(" ")[1].strip()
for i in range(num):
beg_time = time.time()
result = model(wav_path)
end_time = time.time()
duration = end_time-beg_time
total += duration
print(result)
print("num: {}, time, {}, avg: {}, rtf: {}".format(len(wav_path), duration, total/(i+1), (total/(i+1))/5.53))
# infer time
beg_time = time.time()
for i, wav_path_i in enumerate(wav_files):
wav_path = wav_path_i.split("\t")[1].strip() if "\t" in wav_path_i else wav_path_i.split(" ")[1].strip()
result = model(wav_path)
end_time = time.time()
duration = (end_time-beg_time)*1000
print("total_time_comput_ms: {}".format(int(duration)))
duration_time = 0.0
for i, wav_path_i in enumerate(wav_files):
wav_path = wav_path_i.split("\t")[1].strip() if "\t" in wav_path_i else wav_path_i.split(" ")[1].strip()
waveform, _ = librosa.load(wav_path, sr=16000)
duration_time += len(waveform)/16.0
print("total_time_wav_ms: {}".format(int(duration_time)))
print("total_rtf: {:.5}".format(duration/duration_time))

View File

@@ -0,0 +1,71 @@
nj=32
stage=0
scp="/nfs/haoneng.lhn/funasr_data/aishell-1/data/test/wav.scp"
export_root="/nfs/zhifu.gzf/export"
split_scps_tool=split_scp.pl
rtf_tool=test_rtf.py
#:<<!
model_name="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
backend="onnx" # "torch"
quantize='true' # 'False'
tag=${model_name}/${backend}_quantize_${quantize}
!
logs_outputs_dir=${export_root}/logs/${tag}/split$nj
mkdir -p ${logs_outputs_dir}
echo ${logs_outputs_dir}
if [ ${stage} -le 0 ];then
python -m funasr.export.export_model --model-name ${model_name} --export-dir ${export_root} --type ${backend} --quantize ${quantize} --audio_in ${scp}
fi
if [ ${stage} -le 1 ];then
model_dir=${export_root}/${model_name}
split_scps=""
for JOB in $(seq ${nj}); do
split_scps="$split_scps $logs_outputs_dir/wav.$JOB.scp"
done
perl ${split_scps_tool} $scp ${split_scps}
for JOB in $(seq ${nj}); do
{
core_id=`expr $JOB - 1`
taskset -c ${core_id} python ${rtf_tool} --backend ${backend} --model_dir ${model_dir} --wav_file ${logs_outputs_dir}/wav.$JOB.scp --quantize ${quantize} &> ${logs_outputs_dir}/log.$JOB.txt
}&
done
wait
rm -rf ${logs_outputs_dir}/total_time_comput.txt
rm -rf ${logs_outputs_dir}/total_time_wav.txt
rm -rf ${logs_outputs_dir}/total_rtf.txt
for JOB in $(seq ${nj}); do
{
cat ${logs_outputs_dir}/log.$JOB.txt | grep "total_time_comput" | awk -F ' ' '{print $2}' >> ${logs_outputs_dir}/total_time_comput.txt
cat ${logs_outputs_dir}/log.$JOB.txt | grep "total_time_wav" | awk -F ' ' '{print $2}' >> ${logs_outputs_dir}/total_time_wav.txt
cat ${logs_outputs_dir}/log.$JOB.txt | grep "total_rtf" | awk -F ' ' '{print $2}' >> ${logs_outputs_dir}/total_rtf.txt
}
done
total_time_comput=`cat ${logs_outputs_dir}/total_time_comput.txt | awk 'BEGIN {max = 0} {if ($1+0>max+0) max=$1 fi} END {print max}'`
total_time_wav=`cat ${logs_outputs_dir}/total_time_wav.txt | awk '{sum +=$1};END {print sum}'`
rtf=`awk 'BEGIN{printf "%.5f\n",'$total_time_comput'/'$total_time_wav'}'`
speed=`awk 'BEGIN{printf "%.2f\n",1/'$rtf'}'`
echo "total_time_comput_ms: $total_time_comput"
echo "total_time_wav: $total_time_wav"
echo "total_rtf: $rtf, speech: $speed"
fi

View File

@@ -0,0 +1,58 @@
import time
import sys
import librosa
from funasr_local.utils.types import str2bool
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, required=True)
parser.add_argument('--backend', type=str, default='onnx', help='["onnx", "torch"]')
parser.add_argument('--wav_file', type=str, default=None, help='amp fallback number')
parser.add_argument('--quantize', type=str2bool, default=False, help='quantized model')
parser.add_argument('--intra_op_num_threads', type=int, default=1, help='intra_op_num_threads for onnx')
parser.add_argument('--batch_size', type=int, default=1, help='batch_size for onnx')
args = parser.parse_args()
from funasr_local.runtime.python.libtorch.funasr_local_torch import Paraformer
if args.backend == "onnx":
from funasr_local.runtime.python.onnxruntime.funasr_local_onnx import Paraformer
model = Paraformer(args.model_dir, batch_size=args.batch_size, quantize=args.quantize, intra_op_num_threads=args.intra_op_num_threads)
wav_file_f = open(args.wav_file, 'r')
wav_files = wav_file_f.readlines()
# warm-up
total = 0.0
num = 30
wav_path = wav_files[0].split("\t")[1].strip() if "\t" in wav_files[0] else wav_files[0].split(" ")[1].strip()
for i in range(num):
beg_time = time.time()
result = model(wav_path)
end_time = time.time()
duration = end_time-beg_time
total += duration
print(result)
print("num: {}, time, {}, avg: {}, rtf: {}".format(len(wav_path), duration, total/(i+1), (total/(i+1))/5.53))
# infer time
wav_path = []
beg_time = time.time()
for i, wav_path_i in enumerate(wav_files):
wav_path_i = wav_path_i.split("\t")[1].strip() if "\t" in wav_path_i else wav_path_i.split(" ")[1].strip()
wav_path += [wav_path_i]
result = model(wav_path)
end_time = time.time()
duration = (end_time-beg_time)*1000
print("total_time_comput_ms: {}".format(int(duration)))
duration_time = 0.0
for i, wav_path_i in enumerate(wav_files):
wav_path = wav_path_i.split("\t")[1].strip() if "\t" in wav_path_i else wav_path_i.split(" ")[1].strip()
waveform, _ = librosa.load(wav_path, sr=16000)
duration_time += len(waveform)/16.0
print("total_time_wav_ms: {}".format(int(duration_time)))
print("total_rtf: {:.5}".format(duration/duration_time))

View File

@@ -0,0 +1,67 @@
# Service with websocket-python
This is a demo using funasr pipeline with websocket python-api.
## For the Server
### Install the modelscope and funasr
```shell
pip install -U modelscope funasr
# For the users in China, you could install with the command:
# pip install -U modelscope funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple
git clone https://github.com/alibaba/FunASR.git && cd FunASR
```
### Install the requirements for server
```shell
cd funasr/runtime/python/websocket
pip install -r requirements_server.txt
```
### Start server
#### ASR offline server
[//]: # (```shell)
[//]: # (python ws_server_online.py --host "0.0.0.0" --port 10095 --asr_model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
[//]: # (```)
#### ASR streaming server
```shell
python ws_server_online.py --host "0.0.0.0" --port 10095 --asr_model_online "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online"
```
#### ASR offline/online 2pass server
[//]: # (```shell)
[//]: # (python ws_server_online.py --host "0.0.0.0" --port 10095 --asr_model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
[//]: # (```)
## For the client
Install the requirements for client
```shell
git clone https://github.com/alibaba/FunASR.git && cd FunASR
cd funasr/runtime/python/websocket
pip install -r requirements_client.txt
```
### Start client
#### Recording from mircrophone
```shell
# --chunk_size, "5,10,5"=600ms, "8,8,4"=480ms
python ws_client.py --host "127.0.0.1" --port 10095 --chunk_size "5,10,5"
```
#### Loadding from wav.scp(kaldi style)
```shell
# --chunk_size, "5,10,5"=600ms, "8,8,4"=480ms
python ws_client.py --host "127.0.0.1" --port 10095 --chunk_size "5,10,5" --audio_in "./data/wav.scp"
```
## Acknowledge
1. This project is maintained by [FunASR community](https://github.com/alibaba-damo-academy/FunASR).
2. We acknowledge [cgisky1980](https://github.com/cgisky1980/FunASR) for contributing the websocket service.

View File

@@ -0,0 +1,35 @@
# -*- encoding: utf-8 -*-
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--host",
type=str,
default="0.0.0.0",
required=False,
help="host ip, localhost, 0.0.0.0")
parser.add_argument("--port",
type=int,
default=10095,
required=False,
help="grpc server port")
parser.add_argument("--asr_model",
type=str,
default="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
help="model from modelscope")
parser.add_argument("--asr_model_online",
type=str,
default="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online",
help="model from modelscope")
parser.add_argument("--vad_model",
type=str,
default="damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
help="model from modelscope")
parser.add_argument("--punc_model",
type=str,
default="damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727",
help="model from modelscope")
parser.add_argument("--ngpu",
type=int,
default=1,
help="0 for cpu, 1 for gpu")
args = parser.parse_args()

View File

@@ -0,0 +1,2 @@
websockets
pyaudio

View File

@@ -0,0 +1 @@
websockets

View File

@@ -0,0 +1,182 @@
# -*- encoding: utf-8 -*-
import os
import time
import websockets
import asyncio
# import threading
import argparse
import json
parser = argparse.ArgumentParser()
parser.add_argument("--host",
type=str,
default="localhost",
required=False,
help="host ip, localhost, 0.0.0.0")
parser.add_argument("--port",
type=int,
default=10095,
required=False,
help="grpc server port")
parser.add_argument("--chunk_size",
type=str,
default="5, 10, 5",
help="chunk")
parser.add_argument("--chunk_interval",
type=int,
default=10,
help="chunk")
parser.add_argument("--audio_in",
type=str,
default=None,
help="audio_in")
args = parser.parse_args()
args.chunk_size = [int(x) for x in args.chunk_size.split(",")]
# voices = asyncio.Queue()
from queue import Queue
voices = Queue()
# 其他函数可以通过调用send(data)来发送数据,例如:
async def record_microphone():
is_finished = False
import pyaudio
#print("2")
global voices
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 16000
chunk_size = 60*args.chunk_size[1]/args.chunk_interval
CHUNK = int(RATE / 1000 * chunk_size)
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK)
is_speaking = True
while True:
data = stream.read(CHUNK)
data = data.decode('ISO-8859-1')
message = json.dumps({"chunk_size": args.chunk_size, "chunk_interval": args.chunk_interval, "audio": data, "is_speaking": is_speaking, "is_finished": is_finished})
voices.put(message)
#print(voices.qsize())
await asyncio.sleep(0.005)
# 其他函数可以通过调用send(data)来发送数据,例如:
async def record_from_scp():
import wave
global voices
is_finished = False
if args.audio_in.endswith(".scp"):
f_scp = open(args.audio_in)
wavs = f_scp.readlines()
else:
wavs = [args.audio_in]
for wav in wavs:
wav_splits = wav.strip().split()
wav_path = wav_splits[1] if len(wav_splits) > 1 else wav_splits[0]
# bytes_f = open(wav_path, "rb")
# bytes_data = bytes_f.read()
with wave.open(wav_path, "rb") as wav_file:
# 获取音频参数
params = wav_file.getparams()
# 获取头信息的长度
# header_length = wav_file.getheaders()[0][1]
# 读取音频帧数据,跳过头信息
# wav_file.setpos(header_length)
frames = wav_file.readframes(wav_file.getnframes())
# 将音频帧数据转换为字节类型的数据
audio_bytes = bytes(frames)
# stride = int(args.chunk_size/1000*16000*2)
stride = int(60*args.chunk_size[1]/args.chunk_interval/1000*16000*2)
chunk_num = (len(audio_bytes)-1)//stride + 1
# print(stride)
is_speaking = True
for i in range(chunk_num):
if i == chunk_num-1:
is_speaking = False
beg = i*stride
data = audio_bytes[beg:beg+stride]
data = data.decode('ISO-8859-1')
message = json.dumps({"chunk_size": args.chunk_size, "chunk_interval": args.chunk_interval, "is_speaking": is_speaking, "audio": data, "is_finished": is_finished})
voices.put(message)
# print("data_chunk: ", len(data_chunk))
# print(voices.qsize())
await asyncio.sleep(60*args.chunk_size[1]/args.chunk_interval/1000)
is_finished = True
message = json.dumps({"is_finished": is_finished})
voices.put(message)
async def ws_send():
global voices
global websocket
print("started to sending data!")
while True:
while not voices.empty():
data = voices.get()
voices.task_done()
try:
await websocket.send(data) # 通过ws对象发送数据
except Exception as e:
print('Exception occurred:', e)
await asyncio.sleep(0.005)
await asyncio.sleep(0.005)
async def message():
global websocket
text_print = ""
while True:
try:
meg = await websocket.recv()
meg = json.loads(meg)
# print(meg, end = '')
# print("\r")
text = meg["text"][0]
text_print += text
text_print = text_print[-55:]
os.system('clear')
print("\r"+text_print)
except Exception as e:
print("Exception:", e)
async def print_messge():
global websocket
while True:
try:
meg = await websocket.recv()
meg = json.loads(meg)
print(meg)
except Exception as e:
print("Exception:", e)
async def ws_client():
global websocket # 定义一个全局变量ws用于保存websocket连接对象
# uri = "ws://11.167.134.197:8899"
uri = "ws://{}:{}".format(args.host, args.port)
#ws = await websockets.connect(uri, subprotocols=["binary"]) # 创建一个长连接
async for websocket in websockets.connect(uri, subprotocols=["binary"], ping_interval=None):
if args.audio_in is not None:
task = asyncio.create_task(record_from_scp()) # 创建一个后台任务录音
else:
task = asyncio.create_task(record_microphone()) # 创建一个后台任务录音
task2 = asyncio.create_task(ws_send()) # 创建一个后台任务发送
task3 = asyncio.create_task(message()) # 创建一个后台接收消息的任务
await asyncio.gather(task, task2, task3)
asyncio.get_event_loop().run_until_complete(ws_client()) # 启动协程
asyncio.get_event_loop().run_forever()

View File

@@ -0,0 +1,108 @@
import asyncio
import json
import websockets
import time
from queue import Queue
import threading
import logging
import tracemalloc
import numpy as np
from parse_args import args
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.logger import get_logger
from funasr_local_onnx.utils.frontend import load_bytes
tracemalloc.start()
logger = get_logger(log_level=logging.CRITICAL)
logger.setLevel(logging.CRITICAL)
websocket_users = set()
print("model loading")
inference_pipeline_asr_online = pipeline(
task=Tasks.auto_speech_recognition,
model=args.asr_model_online,
model_revision='v1.0.4')
print("model loaded")
async def ws_serve(websocket, path):
frames_online = []
global websocket_users
websocket.send_msg = Queue()
websocket_users.add(websocket)
websocket.param_dict_asr_online = {"cache": dict()}
websocket.speek_online = Queue()
ss_online = threading.Thread(target=asr_online, args=(websocket,))
ss_online.start()
try:
async for message in websocket:
message = json.loads(message)
is_finished = message["is_finished"]
if not is_finished:
audio = bytes(message['audio'], 'ISO-8859-1')
is_speaking = message["is_speaking"]
websocket.param_dict_asr_online["is_final"] = not is_speaking
websocket.param_dict_asr_online["chunk_size"] = message["chunk_size"]
frames_online.append(audio)
if len(frames_online) % message["chunk_interval"] == 0 or not is_speaking:
audio_in = b"".join(frames_online)
websocket.speek_online.put(audio_in)
frames_online = []
if not websocket.send_msg.empty():
await websocket.send(websocket.send_msg.get())
websocket.send_msg.task_done()
except websockets.ConnectionClosed:
print("ConnectionClosed...", websocket_users) # 链接断开
websocket_users.remove(websocket)
except websockets.InvalidState:
print("InvalidState...") # 无效状态
except Exception as e:
print("Exception:", e)
def asr_online(websocket): # ASR推理
global websocket_users
while websocket in websocket_users:
if not websocket.speek_online.empty():
audio_in = websocket.speek_online.get()
websocket.speek_online.task_done()
if len(audio_in) > 0:
# print(len(audio_in))
audio_in = load_bytes(audio_in)
rec_result = inference_pipeline_asr_online(audio_in=audio_in,
param_dict=websocket.param_dict_asr_online)
if websocket.param_dict_asr_online["is_final"]:
websocket.param_dict_asr_online["cache"] = dict()
if "text" in rec_result:
if rec_result["text"] != "sil" and rec_result["text"] != "waiting_for_more_voice":
print(rec_result["text"])
message = json.dumps({"mode": "online", "text": rec_result["text"]})
websocket.send_msg.put(message)
time.sleep(0.005)
start_server = websockets.serve(ws_serve, args.host, args.port, subprotocols=["binary"], ping_interval=None)
asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()