mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
124
funasr_local/modules/repeat.py
Normal file
124
funasr_local/modules/repeat.py
Normal file
@@ -0,0 +1,124 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2019 Shigeki Karita
|
||||
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
"""Repeat the same layer definition."""
|
||||
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class MultiSequential(torch.nn.Sequential):
|
||||
"""Multi-input multi-output torch.nn.Sequential."""
|
||||
|
||||
def forward(self, *args):
|
||||
"""Repeat."""
|
||||
for m in self:
|
||||
args = m(*args)
|
||||
return args
|
||||
|
||||
|
||||
def repeat(N, fn):
|
||||
"""Repeat module N times.
|
||||
|
||||
Args:
|
||||
N (int): Number of repeat time.
|
||||
fn (Callable): Function to generate module.
|
||||
|
||||
Returns:
|
||||
MultiSequential: Repeated model instance.
|
||||
|
||||
"""
|
||||
return MultiSequential(*[fn(n) for n in range(N)])
|
||||
|
||||
|
||||
class MultiBlocks(torch.nn.Module):
|
||||
"""MultiBlocks definition.
|
||||
Args:
|
||||
block_list: Individual blocks of the encoder architecture.
|
||||
output_size: Architecture output size.
|
||||
norm_class: Normalization module class.
|
||||
norm_args: Normalization module arguments.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
block_list: List[torch.nn.Module],
|
||||
output_size: int,
|
||||
norm_class: torch.nn.Module = torch.nn.LayerNorm,
|
||||
) -> None:
|
||||
"""Construct a MultiBlocks object."""
|
||||
super().__init__()
|
||||
|
||||
self.blocks = torch.nn.ModuleList(block_list)
|
||||
self.norm_blocks = norm_class(output_size)
|
||||
|
||||
self.num_blocks = len(block_list)
|
||||
|
||||
def reset_streaming_cache(self, left_context: int, device: torch.device) -> None:
|
||||
"""Initialize/Reset encoder streaming cache.
|
||||
Args:
|
||||
left_context: Number of left frames during chunk-by-chunk inference.
|
||||
device: Device to use for cache tensor.
|
||||
"""
|
||||
for idx in range(self.num_blocks):
|
||||
self.blocks[idx].reset_streaming_cache(left_context, device)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
pos_enc: torch.Tensor,
|
||||
mask: torch.Tensor,
|
||||
chunk_mask: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""Forward each block of the encoder architecture.
|
||||
Args:
|
||||
x: MultiBlocks input sequences. (B, T, D_block_1)
|
||||
pos_enc: Positional embedding sequences.
|
||||
mask: Source mask. (B, T)
|
||||
chunk_mask: Chunk mask. (T_2, T_2)
|
||||
Returns:
|
||||
x: Output sequences. (B, T, D_block_N)
|
||||
"""
|
||||
for block_index, block in enumerate(self.blocks):
|
||||
x, mask, pos_enc = block(x, pos_enc, mask, chunk_mask=chunk_mask)
|
||||
|
||||
x = self.norm_blocks(x)
|
||||
|
||||
return x
|
||||
|
||||
def chunk_forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
pos_enc: torch.Tensor,
|
||||
mask: torch.Tensor,
|
||||
chunk_size: int = 0,
|
||||
left_context: int = 0,
|
||||
right_context: int = 0,
|
||||
) -> torch.Tensor:
|
||||
"""Forward each block of the encoder architecture.
|
||||
Args:
|
||||
x: MultiBlocks input sequences. (B, T, D_block_1)
|
||||
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_att)
|
||||
mask: Source mask. (B, T_2)
|
||||
left_context: Number of frames in left context.
|
||||
right_context: Number of frames in right context.
|
||||
Returns:
|
||||
x: MultiBlocks output sequences. (B, T, D_block_N)
|
||||
"""
|
||||
for block_idx, block in enumerate(self.blocks):
|
||||
x, pos_enc = block.chunk_forward(
|
||||
x,
|
||||
pos_enc,
|
||||
mask,
|
||||
chunk_size=chunk_size,
|
||||
left_context=left_context,
|
||||
right_context=right_context,
|
||||
)
|
||||
|
||||
x = self.norm_blocks(x)
|
||||
|
||||
return x
|
||||
Reference in New Issue
Block a user