mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
67
funasr_local/modules/eend_ola/utils/losses.py
Normal file
67
funasr_local/modules/eend_ola/utils/losses.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from itertools import permutations
|
||||
from torch import nn
|
||||
|
||||
|
||||
def standard_loss(ys, ts, label_delay=0):
|
||||
losses = [F.binary_cross_entropy(torch.sigmoid(y), t) * len(y) for y, t in zip(ys, ts)]
|
||||
loss = torch.sum(torch.stack(losses))
|
||||
n_frames = torch.from_numpy(np.array(np.sum([t.shape[0] for t in ts]))).to(torch.float32).to(ys[0].device)
|
||||
loss = loss / n_frames
|
||||
return loss
|
||||
|
||||
|
||||
def batch_pit_n_speaker_loss(ys, ts, n_speakers_list):
|
||||
max_n_speakers = ts[0].shape[1]
|
||||
olens = [y.shape[0] for y in ys]
|
||||
ys = nn.utils.rnn.pad_sequence(ys, batch_first=True, padding_value=-1)
|
||||
ys_mask = [torch.ones(olen).to(ys.device) for olen in olens]
|
||||
ys_mask = torch.nn.utils.rnn.pad_sequence(ys_mask, batch_first=True, padding_value=0).unsqueeze(-1)
|
||||
|
||||
losses = []
|
||||
for shift in range(max_n_speakers):
|
||||
ts_roll = [torch.roll(t, -shift, dims=1) for t in ts]
|
||||
ts_roll = nn.utils.rnn.pad_sequence(ts_roll, batch_first=True, padding_value=-1)
|
||||
loss = F.binary_cross_entropy(torch.sigmoid(ys), ts_roll, reduction='none')
|
||||
if ys_mask is not None:
|
||||
loss = loss * ys_mask
|
||||
loss = torch.sum(loss, dim=1)
|
||||
losses.append(loss)
|
||||
losses = torch.stack(losses, dim=2)
|
||||
|
||||
perms = np.array(list(permutations(range(max_n_speakers)))).astype(np.float32)
|
||||
perms = torch.from_numpy(perms).to(losses.device)
|
||||
y_ind = torch.arange(max_n_speakers, dtype=torch.float32, device=losses.device)
|
||||
t_inds = torch.fmod(perms - y_ind, max_n_speakers).to(torch.long)
|
||||
|
||||
losses_perm = []
|
||||
for t_ind in t_inds:
|
||||
losses_perm.append(
|
||||
torch.mean(losses[:, y_ind.to(torch.long), t_ind], dim=1))
|
||||
losses_perm = torch.stack(losses_perm, dim=1)
|
||||
|
||||
def select_perm_indices(num, max_num):
|
||||
perms = list(permutations(range(max_num)))
|
||||
sub_perms = list(permutations(range(num)))
|
||||
return [
|
||||
[x[:num] for x in perms].index(perm)
|
||||
for perm in sub_perms]
|
||||
|
||||
masks = torch.full_like(losses_perm, device=losses.device, fill_value=float('inf'))
|
||||
for i, t in enumerate(ts):
|
||||
n_speakers = n_speakers_list[i]
|
||||
indices = select_perm_indices(n_speakers, max_n_speakers)
|
||||
masks[i, indices] = 0
|
||||
losses_perm += masks
|
||||
|
||||
min_loss = torch.sum(torch.min(losses_perm, dim=1)[0])
|
||||
n_frames = torch.from_numpy(np.array(np.sum([t.shape[0] for t in ts]))).to(losses.device)
|
||||
min_loss = min_loss / n_frames
|
||||
|
||||
min_indices = torch.argmin(losses_perm, dim=1)
|
||||
labels_perm = [t[:, perms[idx].to(torch.long)] for t, idx in zip(ts, min_indices)]
|
||||
labels_perm = [t[:, :n_speakers] for t, n_speakers in zip(labels_perm, n_speakers_list)]
|
||||
|
||||
return min_loss, labels_perm
|
||||
95
funasr_local/modules/eend_ola/utils/power.py
Normal file
95
funasr_local/modules/eend_ola/utils/power.py
Normal file
@@ -0,0 +1,95 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.multiprocessing
|
||||
import torch.nn.functional as F
|
||||
from itertools import combinations
|
||||
from itertools import permutations
|
||||
|
||||
|
||||
def generate_mapping_dict(max_speaker_num=6, max_olp_speaker_num=3):
|
||||
all_kinds = []
|
||||
all_kinds.append(0)
|
||||
for i in range(max_olp_speaker_num):
|
||||
selected_num = i + 1
|
||||
coms = np.array(list(combinations(np.arange(max_speaker_num), selected_num)))
|
||||
for com in coms:
|
||||
tmp = np.zeros(max_speaker_num)
|
||||
tmp[com] = 1
|
||||
item = int(raw_dec_trans(tmp.reshape(1, -1), max_speaker_num)[0])
|
||||
all_kinds.append(item)
|
||||
all_kinds_order = sorted(all_kinds)
|
||||
|
||||
mapping_dict = {}
|
||||
mapping_dict['dec2label'] = {}
|
||||
mapping_dict['label2dec'] = {}
|
||||
for i in range(len(all_kinds_order)):
|
||||
dec = all_kinds_order[i]
|
||||
mapping_dict['dec2label'][dec] = i
|
||||
mapping_dict['label2dec'][i] = dec
|
||||
oov_id = len(all_kinds_order)
|
||||
mapping_dict['oov'] = oov_id
|
||||
return mapping_dict
|
||||
|
||||
|
||||
def raw_dec_trans(x, max_speaker_num):
|
||||
num_list = []
|
||||
for i in range(max_speaker_num):
|
||||
num_list.append(x[:, i])
|
||||
base = 1
|
||||
T = x.shape[0]
|
||||
res = np.zeros((T))
|
||||
for num in num_list:
|
||||
res += num * base
|
||||
base = base * 2
|
||||
return res
|
||||
|
||||
|
||||
def mapping_func(num, mapping_dict):
|
||||
if num in mapping_dict['dec2label'].keys():
|
||||
label = mapping_dict['dec2label'][num]
|
||||
else:
|
||||
label = mapping_dict['oov']
|
||||
return label
|
||||
|
||||
|
||||
def dec_trans(x, max_speaker_num, mapping_dict):
|
||||
num_list = []
|
||||
for i in range(max_speaker_num):
|
||||
num_list.append(x[:, i])
|
||||
base = 1
|
||||
T = x.shape[0]
|
||||
res = np.zeros((T))
|
||||
for num in num_list:
|
||||
res += num * base
|
||||
base = base * 2
|
||||
res = np.array([mapping_func(i, mapping_dict) for i in res])
|
||||
return res
|
||||
|
||||
|
||||
def create_powerlabel(label, mapping_dict, max_speaker_num=6, max_olp_speaker_num=3):
|
||||
T, C = label.shape
|
||||
padding_label = np.zeros((T, max_speaker_num))
|
||||
padding_label[:, :C] = label
|
||||
out_label = dec_trans(padding_label, max_speaker_num, mapping_dict)
|
||||
out_label = torch.from_numpy(out_label)
|
||||
return out_label
|
||||
|
||||
|
||||
def generate_perm_pse(label, n_speaker, mapping_dict, max_speaker_num, max_olp_speaker_num=3):
|
||||
perms = np.array(list(permutations(range(n_speaker)))).astype(np.float32)
|
||||
perms = torch.from_numpy(perms).to(label.device).to(torch.int64)
|
||||
perm_labels = [label[:, perm] for perm in perms]
|
||||
perm_pse_labels = [create_powerlabel(perm_label.cpu().numpy(), mapping_dict, max_speaker_num).
|
||||
to(perm_label.device, non_blocking=True) for perm_label in perm_labels]
|
||||
return perm_labels, perm_pse_labels
|
||||
|
||||
|
||||
def generate_min_pse(label, n_speaker, mapping_dict, max_speaker_num, pse_logit, max_olp_speaker_num=3):
|
||||
perm_labels, perm_pse_labels = generate_perm_pse(label, n_speaker, mapping_dict, max_speaker_num,
|
||||
max_olp_speaker_num=max_olp_speaker_num)
|
||||
losses = [F.cross_entropy(input=pse_logit, target=perm_pse_label.to(torch.long)) * len(pse_logit)
|
||||
for perm_pse_label in perm_pse_labels]
|
||||
loss = torch.stack(losses)
|
||||
min_index = torch.argmin(loss)
|
||||
selected_perm_label, selected_pse_label = perm_labels[min_index], perm_pse_labels[min_index]
|
||||
return selected_perm_label, selected_pse_label
|
||||
159
funasr_local/modules/eend_ola/utils/report.py
Normal file
159
funasr_local/modules/eend_ola/utils/report.py
Normal file
@@ -0,0 +1,159 @@
|
||||
import copy
|
||||
import numpy as np
|
||||
import time
|
||||
import torch
|
||||
from eend.utils.power import create_powerlabel
|
||||
from itertools import combinations
|
||||
|
||||
metrics = [
|
||||
('diarization_error', 'speaker_scored', 'DER'),
|
||||
('speech_miss', 'speech_scored', 'SAD_MR'),
|
||||
('speech_falarm', 'speech_scored', 'SAD_FR'),
|
||||
('speaker_miss', 'speaker_scored', 'MI'),
|
||||
('speaker_falarm', 'speaker_scored', 'FA'),
|
||||
('speaker_error', 'speaker_scored', 'CF'),
|
||||
('correct', 'frames', 'accuracy')
|
||||
]
|
||||
|
||||
|
||||
def recover_prediction(y, n_speaker):
|
||||
if n_speaker <= 1:
|
||||
return y
|
||||
elif n_speaker == 2:
|
||||
com_index = torch.from_numpy(
|
||||
np.array(list(combinations(np.arange(n_speaker), 2)))).to(
|
||||
y.dtype)
|
||||
num_coms = com_index.shape[0]
|
||||
y_single = y[:, :-num_coms]
|
||||
y_olp = y[:, -num_coms:]
|
||||
olp_map_index = torch.where(y_olp > 0.5)
|
||||
olp_map_index = torch.stack(olp_map_index, dim=1)
|
||||
com_map_index = com_index[olp_map_index[:, -1]]
|
||||
speaker_map_index = torch.from_numpy(np.array(com_map_index)).view(-1).to(torch.int64)
|
||||
frame_map_index = olp_map_index[:, 0][:, None].repeat([1, 2]).view(-1).to(
|
||||
torch.int64)
|
||||
y_single[frame_map_index] = 0
|
||||
y_single[frame_map_index, speaker_map_index] = 1
|
||||
return y_single
|
||||
else:
|
||||
olp2_com_index = torch.from_numpy(np.array(list(combinations(np.arange(n_speaker), 2)))).to(y.dtype)
|
||||
olp2_num_coms = olp2_com_index.shape[0]
|
||||
olp3_com_index = torch.from_numpy(np.array(list(combinations(np.arange(n_speaker), 3)))).to(y.dtype)
|
||||
olp3_num_coms = olp3_com_index.shape[0]
|
||||
y_single = y[:, :n_speaker]
|
||||
y_olp2 = y[:, n_speaker:n_speaker + olp2_num_coms]
|
||||
y_olp3 = y[:, -olp3_num_coms:]
|
||||
|
||||
olp3_map_index = torch.where(y_olp3 > 0.5)
|
||||
olp3_map_index = torch.stack(olp3_map_index, dim=1)
|
||||
olp3_com_map_index = olp3_com_index[olp3_map_index[:, -1]]
|
||||
olp3_speaker_map_index = torch.from_numpy(np.array(olp3_com_map_index)).view(-1).to(torch.int64)
|
||||
olp3_frame_map_index = olp3_map_index[:, 0][:, None].repeat([1, 3]).view(-1).to(torch.int64)
|
||||
y_single[olp3_frame_map_index] = 0
|
||||
y_single[olp3_frame_map_index, olp3_speaker_map_index] = 1
|
||||
y_olp2[olp3_frame_map_index] = 0
|
||||
|
||||
olp2_map_index = torch.where(y_olp2 > 0.5)
|
||||
olp2_map_index = torch.stack(olp2_map_index, dim=1)
|
||||
olp2_com_map_index = olp2_com_index[olp2_map_index[:, -1]]
|
||||
olp2_speaker_map_index = torch.from_numpy(np.array(olp2_com_map_index)).view(-1).to(torch.int64)
|
||||
olp2_frame_map_index = olp2_map_index[:, 0][:, None].repeat([1, 2]).view(-1).to(torch.int64)
|
||||
y_single[olp2_frame_map_index] = 0
|
||||
y_single[olp2_frame_map_index, olp2_speaker_map_index] = 1
|
||||
return y_single
|
||||
|
||||
|
||||
class PowerReporter():
|
||||
def __init__(self, valid_data_loader, mapping_dict, max_n_speaker):
|
||||
valid_data_loader_cp = copy.deepcopy(valid_data_loader)
|
||||
self.valid_data_loader = valid_data_loader_cp
|
||||
del valid_data_loader
|
||||
self.mapping_dict = mapping_dict
|
||||
self.max_n_speaker = max_n_speaker
|
||||
|
||||
def report(self, model, eidx, device):
|
||||
self.report_val(model, eidx, device)
|
||||
|
||||
def report_val(self, model, eidx, device):
|
||||
model.eval()
|
||||
ud_valid_start = time.time()
|
||||
valid_res, valid_loss, stats_keys, vad_valid_accuracy = self.report_core(model, self.valid_data_loader, device)
|
||||
|
||||
# Epoch Display
|
||||
valid_der = valid_res['diarization_error'] / valid_res['speaker_scored']
|
||||
valid_accuracy = valid_res['correct'].to(torch.float32) / valid_res['frames'] * 100
|
||||
vad_valid_accuracy = vad_valid_accuracy * 100
|
||||
print('Epoch ', eidx + 1, 'Valid Loss ', valid_loss, 'Valid_DER %.5f' % valid_der,
|
||||
'Valid_Accuracy %.5f%% ' % valid_accuracy, 'VAD_Valid_Accuracy %.5f%% ' % vad_valid_accuracy)
|
||||
ud_valid = (time.time() - ud_valid_start) / 60.
|
||||
print('Valid cost time ... ', ud_valid)
|
||||
|
||||
def inv_mapping_func(self, label, mapping_dict):
|
||||
if not isinstance(label, int):
|
||||
label = int(label)
|
||||
if label in mapping_dict['label2dec'].keys():
|
||||
num = mapping_dict['label2dec'][label]
|
||||
else:
|
||||
num = -1
|
||||
return num
|
||||
|
||||
def report_core(self, model, data_loader, device):
|
||||
res = {}
|
||||
for item in metrics:
|
||||
res[item[0]] = 0.
|
||||
res[item[1]] = 0.
|
||||
with torch.no_grad():
|
||||
loss_s = 0.
|
||||
uidx = 0
|
||||
for xs, ts, orders in data_loader:
|
||||
xs = [x.to(device) for x in xs]
|
||||
ts = [t.to(device) for t in ts]
|
||||
orders = [o.to(device) for o in orders]
|
||||
loss, pit_loss, mpit_loss, att_loss, ys, logits, labels, attractors = model(xs, ts, orders)
|
||||
loss_s += loss.item()
|
||||
uidx += 1
|
||||
|
||||
for logit, t, att in zip(logits, labels, attractors):
|
||||
pred = torch.argmax(torch.softmax(logit, dim=-1), dim=-1) # (T, )
|
||||
oov_index = torch.where(pred == self.mapping_dict['oov'])[0]
|
||||
for i in oov_index:
|
||||
if i > 0:
|
||||
pred[i] = pred[i - 1]
|
||||
else:
|
||||
pred[i] = 0
|
||||
pred = [self.inv_mapping_func(i, self.mapping_dict) for i in pred]
|
||||
decisions = [bin(num)[2:].zfill(self.max_n_speaker)[::-1] for num in pred]
|
||||
decisions = torch.from_numpy(
|
||||
np.stack([np.array([int(i) for i in dec]) for dec in decisions], axis=0)).to(att.device).to(
|
||||
torch.float32)
|
||||
decisions = decisions[:, :att.shape[0]]
|
||||
|
||||
stats = self.calc_diarization_error(decisions, t)
|
||||
res['speaker_scored'] += stats['speaker_scored']
|
||||
res['speech_scored'] += stats['speech_scored']
|
||||
res['frames'] += stats['frames']
|
||||
for item in metrics:
|
||||
res[item[0]] += stats[item[0]]
|
||||
loss_s /= uidx
|
||||
vad_acc = 0
|
||||
|
||||
return res, loss_s, stats.keys(), vad_acc
|
||||
|
||||
def calc_diarization_error(self, decisions, label, label_delay=0):
|
||||
label = label[:len(label) - label_delay, ...]
|
||||
n_ref = torch.sum(label, dim=-1)
|
||||
n_sys = torch.sum(decisions, dim=-1)
|
||||
res = {}
|
||||
res['speech_scored'] = torch.sum(n_ref > 0)
|
||||
res['speech_miss'] = torch.sum((n_ref > 0) & (n_sys == 0))
|
||||
res['speech_falarm'] = torch.sum((n_ref == 0) & (n_sys > 0))
|
||||
res['speaker_scored'] = torch.sum(n_ref)
|
||||
res['speaker_miss'] = torch.sum(torch.max(n_ref - n_sys, torch.zeros_like(n_ref)))
|
||||
res['speaker_falarm'] = torch.sum(torch.max(n_sys - n_ref, torch.zeros_like(n_ref)))
|
||||
n_map = torch.sum(((label == 1) & (decisions == 1)), dim=-1).to(torch.float32)
|
||||
res['speaker_error'] = torch.sum(torch.min(n_ref, n_sys) - n_map)
|
||||
res['correct'] = torch.sum(label == decisions) / label.shape[1]
|
||||
res['diarization_error'] = (
|
||||
res['speaker_miss'] + res['speaker_falarm'] + res['speaker_error'])
|
||||
res['frames'] = len(label)
|
||||
return res
|
||||
Reference in New Issue
Block a user