mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
133
funasr_local/modules/eend_ola/encoder.py
Normal file
133
funasr_local/modules/eend_ola/encoder.py
Normal file
@@ -0,0 +1,133 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
|
||||
class MultiHeadSelfAttention(nn.Module):
|
||||
def __init__(self, n_units, h=8, dropout_rate=0.1):
|
||||
super(MultiHeadSelfAttention, self).__init__()
|
||||
self.linearQ = nn.Linear(n_units, n_units)
|
||||
self.linearK = nn.Linear(n_units, n_units)
|
||||
self.linearV = nn.Linear(n_units, n_units)
|
||||
self.linearO = nn.Linear(n_units, n_units)
|
||||
self.d_k = n_units // h
|
||||
self.h = h
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
|
||||
def __call__(self, x, batch_size, x_mask):
|
||||
q = self.linearQ(x).view(batch_size, -1, self.h, self.d_k)
|
||||
k = self.linearK(x).view(batch_size, -1, self.h, self.d_k)
|
||||
v = self.linearV(x).view(batch_size, -1, self.h, self.d_k)
|
||||
scores = torch.matmul(
|
||||
q.permute(0, 2, 1, 3), k.permute(0, 2, 3, 1)) / math.sqrt(self.d_k)
|
||||
if x_mask is not None:
|
||||
x_mask = x_mask.unsqueeze(1)
|
||||
scores = scores.masked_fill(x_mask == 0, -1e9)
|
||||
self.att = F.softmax(scores, dim=3)
|
||||
p_att = self.dropout(self.att)
|
||||
x = torch.matmul(p_att, v.permute(0, 2, 1, 3))
|
||||
x = x.permute(0, 2, 1, 3).contiguous().view(-1, self.h * self.d_k)
|
||||
return self.linearO(x)
|
||||
|
||||
|
||||
class PositionwiseFeedForward(nn.Module):
|
||||
def __init__(self, n_units, d_units, dropout_rate):
|
||||
super(PositionwiseFeedForward, self).__init__()
|
||||
self.linear1 = nn.Linear(n_units, d_units)
|
||||
self.linear2 = nn.Linear(d_units, n_units)
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.linear2(self.dropout(F.relu(self.linear1(x))))
|
||||
|
||||
|
||||
class PositionalEncoding(torch.nn.Module):
|
||||
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False):
|
||||
super(PositionalEncoding, self).__init__()
|
||||
self.d_model = d_model
|
||||
self.reverse = reverse
|
||||
self.xscale = math.sqrt(self.d_model)
|
||||
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
|
||||
|
||||
def extend_pe(self, x):
|
||||
if self.pe is not None:
|
||||
if self.pe.size(1) >= x.size(1):
|
||||
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
pe = torch.zeros(x.size(1), self.d_model)
|
||||
if self.reverse:
|
||||
position = torch.arange(
|
||||
x.size(1) - 1, -1, -1.0, dtype=torch.float32
|
||||
).unsqueeze(1)
|
||||
else:
|
||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.d_model, 2, dtype=torch.float32)
|
||||
* -(math.log(10000.0) / self.d_model)
|
||||
)
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
self.extend_pe(x)
|
||||
x = x * self.xscale + self.pe[:, : x.size(1)]
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class EENDOLATransformerEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
idim: int,
|
||||
n_layers: int,
|
||||
n_units: int,
|
||||
e_units: int = 2048,
|
||||
h: int = 4,
|
||||
dropout_rate: float = 0.1,
|
||||
use_pos_emb: bool = False):
|
||||
super(EENDOLATransformerEncoder, self).__init__()
|
||||
self.lnorm_in = nn.LayerNorm(n_units)
|
||||
self.n_layers = n_layers
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
for i in range(n_layers):
|
||||
setattr(self, '{}{:d}'.format("lnorm1_", i),
|
||||
nn.LayerNorm(n_units))
|
||||
setattr(self, '{}{:d}'.format("self_att_", i),
|
||||
MultiHeadSelfAttention(n_units, h))
|
||||
setattr(self, '{}{:d}'.format("lnorm2_", i),
|
||||
nn.LayerNorm(n_units))
|
||||
setattr(self, '{}{:d}'.format("ff_", i),
|
||||
PositionwiseFeedForward(n_units, e_units, dropout_rate))
|
||||
self.lnorm_out = nn.LayerNorm(n_units)
|
||||
if use_pos_emb:
|
||||
self.pos_enc = torch.nn.Sequential(
|
||||
torch.nn.Linear(idim, n_units),
|
||||
torch.nn.LayerNorm(n_units),
|
||||
torch.nn.Dropout(dropout_rate),
|
||||
torch.nn.ReLU(),
|
||||
PositionalEncoding(n_units, dropout_rate),
|
||||
)
|
||||
else:
|
||||
self.linear_in = nn.Linear(idim, n_units)
|
||||
self.pos_enc = None
|
||||
|
||||
def __call__(self, x, x_mask=None):
|
||||
BT_size = x.shape[0] * x.shape[1]
|
||||
if self.pos_enc is not None:
|
||||
e = self.pos_enc(x)
|
||||
e = e.view(BT_size, -1)
|
||||
else:
|
||||
e = self.linear_in(x.reshape(BT_size, -1))
|
||||
for i in range(self.n_layers):
|
||||
e = getattr(self, '{}{:d}'.format("lnorm1_", i))(e)
|
||||
s = getattr(self, '{}{:d}'.format("self_att_", i))(e, x.shape[0], x_mask)
|
||||
e = e + self.dropout(s)
|
||||
e = getattr(self, '{}{:d}'.format("lnorm2_", i))(e)
|
||||
s = getattr(self, '{}{:d}'.format("ff_", i))(e)
|
||||
e = e + self.dropout(s)
|
||||
return self.lnorm_out(e)
|
||||
Reference in New Issue
Block a user