mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
107
funasr_local/modules/data2vec/quant_noise.py
Normal file
107
funasr_local/modules/data2vec/quant_noise.py
Normal file
@@ -0,0 +1,107 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def quant_noise(module, p, block_size):
|
||||
"""
|
||||
Wraps modules and applies quantization noise to the weights for
|
||||
subsequent quantization with Iterative Product Quantization as
|
||||
described in "Training with Quantization Noise for Extreme Model Compression"
|
||||
|
||||
Args:
|
||||
- module: nn.Module
|
||||
- p: amount of Quantization Noise
|
||||
- block_size: size of the blocks for subsequent quantization with iPQ
|
||||
|
||||
Remarks:
|
||||
- Module weights must have the right sizes wrt the block size
|
||||
- Only Linear, Embedding and Conv2d modules are supported for the moment
|
||||
- For more detail on how to quantize by blocks with convolutional weights,
|
||||
see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks"
|
||||
- We implement the simplest form of noise here as stated in the paper
|
||||
which consists in randomly dropping blocks
|
||||
"""
|
||||
|
||||
# if no quantization noise, don't register hook
|
||||
if p <= 0:
|
||||
return module
|
||||
|
||||
# supported modules
|
||||
assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))
|
||||
|
||||
# test whether module.weight has the right sizes wrt block_size
|
||||
is_conv = module.weight.ndim == 4
|
||||
|
||||
# 2D matrix
|
||||
if not is_conv:
|
||||
assert (
|
||||
module.weight.size(1) % block_size == 0
|
||||
), "Input features must be a multiple of block sizes"
|
||||
|
||||
# 4D matrix
|
||||
else:
|
||||
# 1x1 convolutions
|
||||
if module.kernel_size == (1, 1):
|
||||
assert (
|
||||
module.in_channels % block_size == 0
|
||||
), "Input channels must be a multiple of block sizes"
|
||||
# regular convolutions
|
||||
else:
|
||||
k = module.kernel_size[0] * module.kernel_size[1]
|
||||
assert k % block_size == 0, "Kernel size must be a multiple of block size"
|
||||
|
||||
def _forward_pre_hook(mod, input):
|
||||
# no noise for evaluation
|
||||
if mod.training:
|
||||
if not is_conv:
|
||||
# gather weight and sizes
|
||||
weight = mod.weight
|
||||
in_features = weight.size(1)
|
||||
out_features = weight.size(0)
|
||||
|
||||
# split weight matrix into blocks and randomly drop selected blocks
|
||||
mask = torch.zeros(
|
||||
in_features // block_size * out_features, device=weight.device
|
||||
)
|
||||
mask.bernoulli_(p)
|
||||
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
|
||||
|
||||
else:
|
||||
# gather weight and sizes
|
||||
weight = mod.weight
|
||||
in_channels = mod.in_channels
|
||||
out_channels = mod.out_channels
|
||||
|
||||
# split weight matrix into blocks and randomly drop selected blocks
|
||||
if mod.kernel_size == (1, 1):
|
||||
mask = torch.zeros(
|
||||
int(in_channels // block_size * out_channels),
|
||||
device=weight.device,
|
||||
)
|
||||
mask.bernoulli_(p)
|
||||
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
|
||||
else:
|
||||
mask = torch.zeros(
|
||||
weight.size(0), weight.size(1), device=weight.device
|
||||
)
|
||||
mask.bernoulli_(p)
|
||||
mask = (
|
||||
mask.unsqueeze(2)
|
||||
.unsqueeze(3)
|
||||
.repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
|
||||
)
|
||||
|
||||
# scale weights and apply mask
|
||||
mask = mask.to(
|
||||
torch.bool
|
||||
) # x.bool() is not currently supported in TorchScript
|
||||
s = 1 / (1 - p)
|
||||
mod.weight.data = s * weight.masked_fill(mask, 0)
|
||||
|
||||
module.register_forward_pre_hook(_forward_pre_hook)
|
||||
return module
|
||||
Reference in New Issue
Block a user