mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
147
funasr_local/modules/data2vec/data_utils.py
Normal file
147
funasr_local/modules/data2vec/data_utils.py
Normal file
@@ -0,0 +1,147 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
def compute_mask_indices(
|
||||
shape: Tuple[int, int],
|
||||
padding_mask: Optional[torch.Tensor],
|
||||
mask_prob: float,
|
||||
mask_length: int,
|
||||
mask_type: str = "static",
|
||||
mask_other: float = 0.0,
|
||||
min_masks: int = 0,
|
||||
no_overlap: bool = False,
|
||||
min_space: int = 0,
|
||||
require_same_masks: bool = True,
|
||||
mask_dropout: float = 0.0,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Computes random mask spans for a given shape
|
||||
|
||||
Args:
|
||||
shape: the the shape for which to compute masks.
|
||||
should be of size 2 where first element is batch size and 2nd is timesteps
|
||||
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
|
||||
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
|
||||
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
|
||||
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
|
||||
mask_type: how to compute mask lengths
|
||||
static = fixed size
|
||||
uniform = sample from uniform distribution [mask_other, mask_length*2]
|
||||
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
|
||||
poisson = sample from possion distribution with lambda = mask length
|
||||
min_masks: minimum number of masked spans
|
||||
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
|
||||
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
|
||||
require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample
|
||||
mask_dropout: randomly dropout this percentage of masks in each example
|
||||
"""
|
||||
|
||||
bsz, all_sz = shape
|
||||
mask = np.full((bsz, all_sz), False)
|
||||
|
||||
all_num_mask = int(
|
||||
# add a random number for probabilistic rounding
|
||||
mask_prob * all_sz / float(mask_length)
|
||||
+ np.random.rand()
|
||||
)
|
||||
|
||||
all_num_mask = max(min_masks, all_num_mask)
|
||||
|
||||
mask_idcs = []
|
||||
for i in range(bsz):
|
||||
if padding_mask is not None:
|
||||
sz = all_sz - padding_mask[i].long().sum().item()
|
||||
num_mask = int(
|
||||
# add a random number for probabilistic rounding
|
||||
mask_prob * sz / float(mask_length)
|
||||
+ np.random.rand()
|
||||
)
|
||||
num_mask = max(min_masks, num_mask)
|
||||
else:
|
||||
sz = all_sz
|
||||
num_mask = all_num_mask
|
||||
|
||||
if mask_type == "static":
|
||||
lengths = np.full(num_mask, mask_length)
|
||||
elif mask_type == "uniform":
|
||||
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
|
||||
elif mask_type == "normal":
|
||||
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
|
||||
lengths = [max(1, int(round(x))) for x in lengths]
|
||||
elif mask_type == "poisson":
|
||||
lengths = np.random.poisson(mask_length, size=num_mask)
|
||||
lengths = [int(round(x)) for x in lengths]
|
||||
else:
|
||||
raise Exception("unknown mask selection " + mask_type)
|
||||
|
||||
if sum(lengths) == 0:
|
||||
lengths[0] = min(mask_length, sz - 1)
|
||||
|
||||
if no_overlap:
|
||||
mask_idc = []
|
||||
|
||||
def arrange(s, e, length, keep_length):
|
||||
span_start = np.random.randint(s, e - length)
|
||||
mask_idc.extend(span_start + i for i in range(length))
|
||||
|
||||
new_parts = []
|
||||
if span_start - s - min_space >= keep_length:
|
||||
new_parts.append((s, span_start - min_space + 1))
|
||||
if e - span_start - length - min_space > keep_length:
|
||||
new_parts.append((span_start + length + min_space, e))
|
||||
return new_parts
|
||||
|
||||
parts = [(0, sz)]
|
||||
min_length = min(lengths)
|
||||
for length in sorted(lengths, reverse=True):
|
||||
lens = np.fromiter(
|
||||
(e - s if e - s >= length + min_space else 0 for s, e in parts),
|
||||
np.int,
|
||||
)
|
||||
l_sum = np.sum(lens)
|
||||
if l_sum == 0:
|
||||
break
|
||||
probs = lens / np.sum(lens)
|
||||
c = np.random.choice(len(parts), p=probs)
|
||||
s, e = parts.pop(c)
|
||||
parts.extend(arrange(s, e, length, min_length))
|
||||
mask_idc = np.asarray(mask_idc)
|
||||
else:
|
||||
min_len = min(lengths)
|
||||
if sz - min_len <= num_mask:
|
||||
min_len = sz - num_mask - 1
|
||||
|
||||
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
|
||||
|
||||
mask_idc = np.asarray(
|
||||
[
|
||||
mask_idc[j] + offset
|
||||
for j in range(len(mask_idc))
|
||||
for offset in range(lengths[j])
|
||||
]
|
||||
)
|
||||
|
||||
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
|
||||
|
||||
min_len = min([len(m) for m in mask_idcs])
|
||||
for i, mask_idc in enumerate(mask_idcs):
|
||||
if len(mask_idc) > min_len and require_same_masks:
|
||||
mask_idc = np.random.choice(mask_idc, min_len, replace=False)
|
||||
if mask_dropout > 0:
|
||||
num_holes = np.rint(len(mask_idc) * mask_dropout).astype(int)
|
||||
mask_idc = np.random.choice(
|
||||
mask_idc, len(mask_idc) - num_holes, replace=False
|
||||
)
|
||||
|
||||
mask[i, mask_idc] = True
|
||||
|
||||
return mask
|
||||
Reference in New Issue
Block a user