mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
335
funasr_local/models/encoder/opennmt_encoders/fsmn_encoder.py
Normal file
335
funasr_local/models/encoder/opennmt_encoders/fsmn_encoder.py
Normal file
@@ -0,0 +1,335 @@
|
||||
from typing import List
|
||||
from typing import Optional
|
||||
from typing import Sequence
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
import logging
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from typeguard import check_argument_types
|
||||
import numpy as np
|
||||
from funasr_local.modules.nets_utils import make_pad_mask
|
||||
from funasr_local.modules.layer_norm import LayerNorm
|
||||
from funasr_local.models.encoder.abs_encoder import AbsEncoder
|
||||
import math
|
||||
from funasr_local.modules.repeat import repeat
|
||||
from funasr_local.modules.multi_layer_conv import FsmnFeedForward
|
||||
|
||||
|
||||
class FsmnBlock(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
n_feat,
|
||||
dropout_rate,
|
||||
kernel_size,
|
||||
fsmn_shift=0,
|
||||
):
|
||||
super().__init__()
|
||||
self.dropout = nn.Dropout(p=dropout_rate)
|
||||
self.fsmn_block = nn.Conv1d(n_feat, n_feat, kernel_size, stride=1,
|
||||
padding=0, groups=n_feat, bias=False)
|
||||
# padding
|
||||
left_padding = (kernel_size - 1) // 2
|
||||
if fsmn_shift > 0:
|
||||
left_padding = left_padding + fsmn_shift
|
||||
right_padding = kernel_size - 1 - left_padding
|
||||
self.pad_fn = nn.ConstantPad1d((left_padding, right_padding), 0.0)
|
||||
|
||||
def forward(self, inputs, mask, mask_shfit_chunk=None):
|
||||
b, t, d = inputs.size()
|
||||
if mask is not None:
|
||||
mask = torch.reshape(mask, (b, -1, 1))
|
||||
if mask_shfit_chunk is not None:
|
||||
mask = mask * mask_shfit_chunk
|
||||
|
||||
inputs = inputs * mask
|
||||
x = inputs.transpose(1, 2)
|
||||
x = self.pad_fn(x)
|
||||
x = self.fsmn_block(x)
|
||||
x = x.transpose(1, 2)
|
||||
x = x + inputs
|
||||
x = self.dropout(x)
|
||||
return x * mask
|
||||
|
||||
|
||||
class EncoderLayer(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_size,
|
||||
size,
|
||||
feed_forward,
|
||||
fsmn_block,
|
||||
dropout_rate=0.0
|
||||
):
|
||||
super().__init__()
|
||||
self.in_size = in_size
|
||||
self.size = size
|
||||
self.ffn = feed_forward
|
||||
self.memory = fsmn_block
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
xs_pad: torch.Tensor,
|
||||
mask: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# xs_pad in Batch, Time, Dim
|
||||
|
||||
context = self.ffn(xs_pad)[0]
|
||||
memory = self.memory(context, mask)
|
||||
|
||||
memory = self.dropout(memory)
|
||||
if self.in_size == self.size:
|
||||
return memory + xs_pad, mask
|
||||
|
||||
return memory, mask
|
||||
|
||||
|
||||
class FsmnEncoder(AbsEncoder):
|
||||
"""Encoder using Fsmn
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_units,
|
||||
filter_size,
|
||||
fsmn_num_layers,
|
||||
dnn_num_layers,
|
||||
num_memory_units=512,
|
||||
ffn_inner_dim=2048,
|
||||
dropout_rate=0.0,
|
||||
shift=0,
|
||||
position_encoder=None,
|
||||
sample_rate=1,
|
||||
out_units=None,
|
||||
tf2torch_tensor_name_prefix_torch="post_net",
|
||||
tf2torch_tensor_name_prefix_tf="EAND/post_net"
|
||||
):
|
||||
"""Initializes the parameters of the encoder.
|
||||
|
||||
Args:
|
||||
filter_size: the total order of memory block
|
||||
fsmn_num_layers: The number of fsmn layers.
|
||||
dnn_num_layers: The number of dnn layers
|
||||
num_units: The number of memory units.
|
||||
ffn_inner_dim: The number of units of the inner linear transformation
|
||||
in the feed forward layer.
|
||||
dropout_rate: The probability to drop units from the outputs.
|
||||
shift: left padding, to control delay
|
||||
position_encoder: The :class:`opennmt.layers.position.PositionEncoder` to
|
||||
apply on inputs or ``None``.
|
||||
"""
|
||||
super(FsmnEncoder, self).__init__()
|
||||
self.in_units = in_units
|
||||
self.filter_size = filter_size
|
||||
self.fsmn_num_layers = fsmn_num_layers
|
||||
self.dnn_num_layers = dnn_num_layers
|
||||
self.num_memory_units = num_memory_units
|
||||
self.ffn_inner_dim = ffn_inner_dim
|
||||
self.dropout_rate = dropout_rate
|
||||
self.shift = shift
|
||||
if not isinstance(shift, list):
|
||||
self.shift = [shift for _ in range(self.fsmn_num_layers)]
|
||||
self.sample_rate = sample_rate
|
||||
if not isinstance(sample_rate, list):
|
||||
self.sample_rate = [sample_rate for _ in range(self.fsmn_num_layers)]
|
||||
self.position_encoder = position_encoder
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
self.out_units = out_units
|
||||
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
|
||||
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
|
||||
|
||||
self.fsmn_layers = repeat(
|
||||
self.fsmn_num_layers,
|
||||
lambda lnum: EncoderLayer(
|
||||
in_units if lnum == 0 else num_memory_units,
|
||||
num_memory_units,
|
||||
FsmnFeedForward(
|
||||
in_units if lnum == 0 else num_memory_units,
|
||||
ffn_inner_dim,
|
||||
num_memory_units,
|
||||
1,
|
||||
dropout_rate
|
||||
),
|
||||
FsmnBlock(
|
||||
num_memory_units,
|
||||
dropout_rate,
|
||||
filter_size,
|
||||
self.shift[lnum]
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
self.dnn_layers = repeat(
|
||||
dnn_num_layers,
|
||||
lambda lnum: FsmnFeedForward(
|
||||
num_memory_units,
|
||||
ffn_inner_dim,
|
||||
num_memory_units,
|
||||
1,
|
||||
dropout_rate,
|
||||
)
|
||||
)
|
||||
if out_units is not None:
|
||||
self.conv1d = nn.Conv1d(num_memory_units, out_units, 1, 1)
|
||||
|
||||
def output_size(self) -> int:
|
||||
return self.num_memory_units
|
||||
|
||||
def forward(
|
||||
self,
|
||||
xs_pad: torch.Tensor,
|
||||
ilens: torch.Tensor,
|
||||
prev_states: torch.Tensor = None
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
||||
inputs = xs_pad
|
||||
if self.position_encoder is not None:
|
||||
inputs = self.position_encoder(inputs)
|
||||
|
||||
inputs = self.dropout(inputs)
|
||||
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
|
||||
inputs = self.fsmn_layers(inputs, masks)[0]
|
||||
inputs = self.dnn_layers(inputs)[0]
|
||||
|
||||
if self.out_units is not None:
|
||||
inputs = self.conv1d(inputs.transpose(1, 2)).transpose(1, 2)
|
||||
|
||||
return inputs, ilens, None
|
||||
|
||||
def gen_tf2torch_map_dict(self):
|
||||
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch
|
||||
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf
|
||||
map_dict_local = {
|
||||
# torch: conv1d.weight in "out_channel in_channel kernel_size"
|
||||
# tf : conv1d.weight in "kernel_size in_channel out_channel"
|
||||
# torch: linear.weight in "out_channel in_channel"
|
||||
# tf : dense.weight in "in_channel out_channel"
|
||||
# for fsmn_layers
|
||||
"{}.fsmn_layers.layeridx.ffn.norm.bias".format(tensor_name_prefix_torch):
|
||||
{"name": "{}/fsmn_layer_layeridx/ffn/LayerNorm/beta".format(tensor_name_prefix_tf),
|
||||
"squeeze": None,
|
||||
"transpose": None,
|
||||
},
|
||||
"{}.fsmn_layers.layeridx.ffn.norm.weight".format(tensor_name_prefix_torch):
|
||||
{"name": "{}/fsmn_layer_layeridx/ffn/LayerNorm/gamma".format(tensor_name_prefix_tf),
|
||||
"squeeze": None,
|
||||
"transpose": None,
|
||||
},
|
||||
"{}.fsmn_layers.layeridx.ffn.w_1.bias".format(tensor_name_prefix_torch):
|
||||
{"name": "{}/fsmn_layer_layeridx/ffn/conv1d/bias".format(tensor_name_prefix_tf),
|
||||
"squeeze": None,
|
||||
"transpose": None,
|
||||
},
|
||||
"{}.fsmn_layers.layeridx.ffn.w_1.weight".format(tensor_name_prefix_torch):
|
||||
{"name": "{}/fsmn_layer_layeridx/ffn/conv1d/kernel".format(tensor_name_prefix_tf),
|
||||
"squeeze": None,
|
||||
"transpose": (2, 1, 0),
|
||||
},
|
||||
"{}.fsmn_layers.layeridx.ffn.w_2.weight".format(tensor_name_prefix_torch):
|
||||
{"name": "{}/fsmn_layer_layeridx/ffn/conv1d_1/kernel".format(tensor_name_prefix_tf),
|
||||
"squeeze": None,
|
||||
"transpose": (2, 1, 0),
|
||||
},
|
||||
"{}.fsmn_layers.layeridx.memory.fsmn_block.weight".format(tensor_name_prefix_torch):
|
||||
{"name": "{}/fsmn_layer_layeridx/memory/depth_conv_w".format(tensor_name_prefix_tf),
|
||||
"squeeze": 0,
|
||||
"transpose": (1, 2, 0),
|
||||
}, # (1, 31, 512, 1) -> (31, 512, 1) -> (512, 1, 31)
|
||||
|
||||
# for dnn_layers
|
||||
"{}.dnn_layers.layeridx.norm.bias".format(tensor_name_prefix_torch):
|
||||
{"name": "{}/dnn_layer_layeridx/LayerNorm/beta".format(tensor_name_prefix_tf),
|
||||
"squeeze": None,
|
||||
"transpose": None,
|
||||
},
|
||||
"{}.dnn_layers.layeridx.norm.weight".format(tensor_name_prefix_torch):
|
||||
{"name": "{}/dnn_layer_layeridx/LayerNorm/gamma".format(tensor_name_prefix_tf),
|
||||
"squeeze": None,
|
||||
"transpose": None,
|
||||
},
|
||||
"{}.dnn_layers.layeridx.w_1.bias".format(tensor_name_prefix_torch):
|
||||
{"name": "{}/dnn_layer_layeridx/conv1d/bias".format(tensor_name_prefix_tf),
|
||||
"squeeze": None,
|
||||
"transpose": None,
|
||||
},
|
||||
"{}.dnn_layers.layeridx.w_1.weight".format(tensor_name_prefix_torch):
|
||||
{"name": "{}/dnn_layer_layeridx/conv1d/kernel".format(tensor_name_prefix_tf),
|
||||
"squeeze": None,
|
||||
"transpose": (2, 1, 0),
|
||||
},
|
||||
"{}.dnn_layers.layeridx.w_2.weight".format(tensor_name_prefix_torch):
|
||||
{"name": "{}/dnn_layer_layeridx/conv1d_1/kernel".format(tensor_name_prefix_tf),
|
||||
"squeeze": None,
|
||||
"transpose": (2, 1, 0),
|
||||
},
|
||||
|
||||
}
|
||||
if self.out_units is not None:
|
||||
# add output layer
|
||||
map_dict_local.update({
|
||||
"{}.conv1d.weight".format(tensor_name_prefix_torch):
|
||||
{"name": "{}/conv1d/kernel".format(tensor_name_prefix_tf),
|
||||
"squeeze": None,
|
||||
"transpose": (2, 1, 0),
|
||||
},
|
||||
"{}.conv1d.bias".format(tensor_name_prefix_torch):
|
||||
{"name": "{}/conv1d/bias".format(tensor_name_prefix_tf),
|
||||
"squeeze": None,
|
||||
"transpose": None,
|
||||
},
|
||||
})
|
||||
|
||||
return map_dict_local
|
||||
|
||||
def convert_tf2torch(self,
|
||||
var_dict_tf,
|
||||
var_dict_torch,
|
||||
):
|
||||
|
||||
map_dict = self.gen_tf2torch_map_dict()
|
||||
|
||||
var_dict_torch_update = dict()
|
||||
for name in sorted(var_dict_torch.keys(), reverse=False):
|
||||
if name.startswith(self.tf2torch_tensor_name_prefix_torch):
|
||||
# process special (first and last) layers
|
||||
if name in map_dict:
|
||||
name_tf = map_dict[name]["name"]
|
||||
data_tf = var_dict_tf[name_tf]
|
||||
if map_dict[name]["squeeze"] is not None:
|
||||
data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"])
|
||||
if map_dict[name]["transpose"] is not None:
|
||||
data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
|
||||
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
|
||||
assert var_dict_torch[name].size() == data_tf.size(), \
|
||||
"{}, {}, {} != {}".format(name, name_tf,
|
||||
var_dict_torch[name].size(), data_tf.size())
|
||||
var_dict_torch_update[name] = data_tf
|
||||
logging.info("torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
|
||||
name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape
|
||||
))
|
||||
# process general layers
|
||||
else:
|
||||
# self.tf2torch_tensor_name_prefix_torch may include ".", solve this case
|
||||
names = name.replace(self.tf2torch_tensor_name_prefix_torch, "todo").split('.')
|
||||
layeridx = int(names[2])
|
||||
name_q = name.replace(".{}.".format(layeridx), ".layeridx.")
|
||||
if name_q in map_dict.keys():
|
||||
name_v = map_dict[name_q]["name"]
|
||||
name_tf = name_v.replace("layeridx", "{}".format(layeridx))
|
||||
data_tf = var_dict_tf[name_tf]
|
||||
if map_dict[name_q]["squeeze"] is not None:
|
||||
data_tf = np.squeeze(data_tf, axis=map_dict[name_q]["squeeze"])
|
||||
if map_dict[name_q]["transpose"] is not None:
|
||||
data_tf = np.transpose(data_tf, map_dict[name_q]["transpose"])
|
||||
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
|
||||
assert var_dict_torch[name].size() == data_tf.size(), \
|
||||
"{}, {}, {} != {}".format(name, name_tf,
|
||||
var_dict_torch[name].size(), data_tf.size())
|
||||
var_dict_torch_update[name] = data_tf
|
||||
logging.info("torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
|
||||
name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape
|
||||
))
|
||||
else:
|
||||
logging.warning("{} is missed from tf checkpoint".format(name))
|
||||
|
||||
return var_dict_torch_update
|
||||
Reference in New Issue
Block a user